
Lecture 5: NNGP, Dual Activations, and Over-parameterization

Adityanarayanan Radhakrishnan

Edited by: Max Ruiz Luyten, George Stefanakis, Cathy Cai

September 25, 2024

1 Introduction
Having established the kernel regression framework, we now make explicit the connection between kernel
regression and training the last layer of infinitely wide neural networks given by the Neural Network Gaussian
Process (NNGP). We will develop the machinery to compute the NNGP for 1 hidden layer nonlinear networks,
and present examples of applying kernel regression with the NNGP for varying activation functions. We will
lastly introduce the double descent curve, which demonstrates that using higher dimensional feature maps
(e.g. using wider neural networks) leads to improved generalization. Our derivation of the NNGP for 1
hidden layer neural networks lays the foundation for the derivation of the NNGP and Neural Tangent Kernel
for networks of arbitrary depth in the upcoming lectures.

2 Random Feature Models and Neural Network Gaussian Processes
Consider a training dataset of samples X = [x(1), x(2), . . . , x(n)] ∈ Rd×n and labels y = [y(1), y(2), . . . , y(n)] ∈
R1×n. Recall that kernel regression involves first applying a fixed mapping ψ : Rd → H into Hilbert space H,
and then performing linear regression in H. In the previous lecture, we showed that linear regression can be
performed in any Hilbert space by considering a kernel K : Rd × Rd → R given by K(x, x̃) = 〈ψ(x), ψ(x̃)〉H
and applying the Representer theorem.

While in the previous lecture we considered a variety of standard kernel functions (e.g. Gaussian, Laplacian,
etc.) without considering the corresponding feature maps, we will now proceed in the reverse direction. In
particular, we will first consider feature maps given by randomly initialized neural networks and then compute
corresponding kernel function as neural network width approaches infinity. As a simple yet powerful example,
suppose we use a 1 hidden layer nonlinear neural network where only the last layer is trained and the first
layer is a fixed random matrix. Then, we can think of the first layer as applying a fixed feature map ψ to
our examples and then performing linear regression with the second layer, as is formalized below.

Example 1. Let X = [x(1), x(2), . . . , x(n)] ∈ Rd×n denote training samples and y = [y(1), y(2), . . . , y(n)] ∈
R1×n denote training labels. Given A ∈ R1×k, B ∈ Rk×d and φ : R→ R an elementwise activation function,
let f : Rd → R such that f(x) = Aφ(Bx) denote a 1 hidden layer neural network. Suppose Bi,j

i.i.d.∼ P for
some probability distribution P and is fixed. Then, using gradient descent with A(0) = 0 to minimize the
loss:

L(A) =
1

2

n∑
i=1

(y(i) − f(x(i)))2 =
1

2

n∑
i=1

(y(i) −Aφ(Bx(i)))2

is equivalent to using kernel regression with the kernel Σ(x, x̃) = 〈φ(Bx), φ(Bx̃)〉 to map from X to y. See
Fig. 1 for a visual depiction of the above setting.

Hence for any fixed finite width k, we can construct the kernel by computing the product 〈φ(Bx), φ(Bx̃)〉.
Interestingly, under certain conditions on the initialization, we can tractably compute the inner product even
in the limit as k →∞, and the resulting kernel is called the Neural Network Gaussian Process (NNGP).

1

Figure 1: A visualization of how training the last layer of a finite width neural network is equivalent to
performing kernel regression. When training only the last layer (i.e. updating only the matrix A), the
first layer’s weight matrix B is fixed and so the corresponding feature map for kernel regression is given by
ψ(x) = φ(Bx).

Definition 1. Given A ∈ R1×k, B ∈ Rk×d and φ : R→ R an elementwise activation function, let f : Rd → R
such that f(x) = 1√

k
Aφ(Bx) denote a 1 hidden layer neural network. If Bi,j

i.i.d.∼ N (0, 1), then the Neural
Network Gaussian Process (NNGP) is given by the kernel Σ(x, x̃) = limk→∞

[
1
k 〈φ(Bx), φ(Bx̃)〉

]
.

The reason for including the 1√
k
scaling factor in Definition 1 is such that the kernel Σ(x, x̃) can be evaluated

using the law of large numbers as follows.

Proposition 1. Under the setting of Definition 1, Σ(x, x̃) = E(u,v)∼N (0,Λ)[φ(u)φ(v)] where

Λ =

[
‖x‖22 xT x̃

xT x̃ ‖x̃‖22

]
.

Proof. From Definition 1, we have:

lim
k→∞

[
1

k
〈φ(Bx), φ(Bx̃)〉

]
= lim
k→∞

[
1

k

k∑
i=1

φ(Bx)iφ(Bx̃)i

]

= lim
k→∞

[
1

k

k∑
i=1

φ(Bi,:x)φ(Bi,:x̃)

]
= Ew∼N (0,Id)[φ(wTx)φ(wT x̃)] ;

where the last equality follows from the law of large numbers. Now, we can use the substitution u = wTx
and v = wT x̃ where u, v are now jointly Gaussian random variables. As will be shown in the homework, we
have:

E[(u, v)] = (0, 0) ; Cov(u, v) = xT x̃

Hence, we conclude:

Σ(x, x̃) = E(u,v)∼N (0,Λ)[φ(u)φ(v)]

Λ =

[
‖x‖22 xT x̃

xT x̃ ‖x̃‖22

]
.

In many cases, we directly compute such expectations via integration. For example, we can directly compute
the NNGP for the ReLU function, i.e. φ(x) =

√
2 max(0, x), although the computation is involved (See

2

Appendix A). In particular, in the homework, we will compute the NNGP for φ(x) = sin(x). We here give
a list of activation functions for which the NNGP kernel has a closed form (implemented in the Neural
Tangents Library [11]) at the time of writing: ReLU, Leaky ReLU, GeLU, Sine, Cosine, Error function (erf),
Hermite polynomials. As a simple example, below we present the NNGP for the Random Fourier Feature
model [13], which is recognizable as the Gaussian kernel.

Example 2. In the setting of Definition 1, let φ(z) = eiz for z ∈ R and consider the inner product in `2(C)
given by 〈{an}∞n=0, {bn}∞n=0〉 =

∑∞
n=0 anbn. Then, the NNGP is given by:

Σ(x, x̃) = Ew∼N (0,Id)[φ(wTx)φ(wT x̃)]

= Ew∼N (0,Id)[e
i(wT x−wT x̃)]

=

d∏
j=1

Ewj∼N (0,1)

[
eiwj(xj−x̃j)

]

=

d∏
j=1

1√
2π

∫ ∞
−∞

eiwj(xj−x̃j)e−
w2
i
2 dwj

=

d∏
j=1

e−
(xj−x̃j)

2

2
1√
2π

∫ ∞
−∞

e
(wj−i(xj−x̃j))

2

2 dwj

=

d∏
j=1

e−
(xj−x̃j)

2

2

= e−
1
2‖x−x̃‖

2
2 ;

which is exactly the Gaussian kernel with L = 1.

Fortunately, even when it is difficult to compute the expectation above exactly, the following general theory
of dual activations [7] allows for a simple approximation of the NNGP kernel.

3 Dual Activations

A note to the reader: This section involves more math than will be required for the course (i.e.
Hermite polynomials and elements of functional analysis). It is not essential for computing and using
the NNGP in practice and proofs may be skipped upon a first read-through if the reader is mainly
interested in applications. The notation for dual activations, however, will be used throughout the
course given that it considerably simplifies the formulation of the NTK for deep networks.

Given that we know Σ(x, x̃) if we can evaluate the expectation in Proposition 1, we now present tools that are
useful for calculating this expectation. In particular, when data lie on the unit sphere, Sd−1, the expectation
we wish to compute is referred to as the dual activation.

Definition 2. Let φ(x) : R → R be an activation function. Then the dual activation of φ is given by
φ̌ : [−1, 1]→ R where:

φ̌(ξ) = E(u,v)∼N (0,Λ)[φ(u)φ(v)] ; Λ =

[
1 ξ

ξ 1

]
.

In particular, we have the following explicit connection between the NNGP and the dual activation, when
data lies on the unit sphere.

Corollary 1. Under the setting of Definition 1, if x, x̃ ∈ Sd−1 and ξ = xT x̃, then Σ(x, x̃) = φ̌(ξ).

3

In order to simplify the expectation term in the dual activation, we turn to identifying a basis for the
functions φ for which the expectations are easy to compute. In particular, we will show that the expectation
term in the dual activation is easy to compute for the Hermite polynomials, which are defined below.

Definition 3 (Probabilist’s Hermite Polynomial). The Hermite polynomials {hi(x)}∞i=0 are an orthonormal
basis for the Hilbert space, L2(µ), with inner product 〈f, g〉 =

∫
R f(x)g(x)e−

x2

2 dx constructed by performing
Gram-Schmidt orthogonalization in L2(µ) using the polynomials {xi}∞i=0.

We list the first few probabilisit’s Hermite polynomials below.

Example 3. h0(x) = 1, h1(x) = x, h2(x) = x2−1√
2!
, h3(x) = x3−3x√

3!
.

The dual of of a Hermite polynomial is convenient to compute as follows.

Proposition 2. If φ(x) = hn(x) for x ∈ Sd−1, then φ̌(ξ) = ξn for ξ ∈ [−1, 1].

Proof. The proof is given in [12, Ch.11] and proceeds as follows. Let x, x̃ ∈ Sd−1 with ξ = xT x̃. Let
w ∼ N (0, Id), and let u = wTx and v = wT x̃. We then consider the following expectation for s, t ∈ R:

Ew[exp (su+ tv)] = Ew

[
exp

(
d∑
i=1

wi(sxi + tx̃i)

)]

=

d∏
i=1

Ewi [exp (wi(sxi + tx̃i))]

=

d∏
i=1

exp

(
1

2
(s2x2

i + 2stxix̃i + t2x̃2
i)

)
= exp

(
1

2
(s2 + 2stξ + t2)

)
;

where the third equality follows from completing the square inside the integral.1 Hence, by multiplying the
above by exp

(
− 1

2 (s2 + t2)
)
, we conclude:

Ew
[
exp

(
su+ tv − 1

2
(s2 + t2)

)]
= exp (stξ) =

∞∑
j=0

ξj(st)j

j!
(1)

Now, if we write out the Taylor series for the exponential term on the left hand side, we necessarily have
that the coefficients are polynomials in u and v. Namely,

Ew
[
exp

(
su+ tv − 1

2
(s2 + t2)

)]
= Ew

[
exp

(
su− s2

2

)
exp

(
tv − t2

2

)]
=

∞∑
i,j=0

sitj

i!j!
Ew[Hi(u)Hj(v)] ; (2)

where {Hn(x)}∞n=0 are polynomials in x. Lastly, equating the terms in Eq.(1) and (2), we have:

∞∑
i,j=0

sitj

i!j!
Ew[Hi(u)Hj(v)] =

∞∑
j=0

ξj(st)j

j!

=⇒ Ew[Hi(u)Hj(v)] =

j!ξj if i = j

0 if i 6= j

1This is also the computation of the moment generating function for the Gaussian distribution.

4

Hence, we conclude that the polynomialsHi form an orthogonal basis for the space L2(µ), and by normalizing
them such that hi(x) = 1√

i!
Hi(x), we conclude that {hi} are indeed the Hermite polynomials. Thus, for

φ(x) = hi(x):

φ̌(ξ) = Ew[hi(u)hi(v)] = ξi

Assuming our function φ ∈ L2(µ), we can then use the orthogonal decomposition of φ into the Hermite basis
to get the following result.

Theorem 1. Let φ ∈ L2(µ) such that φ(x) =
∑∞
n=0 anhn(x) for x ∈ Sd−1. Then, φ̌(ξ) =

∑∞
n=0 a

2
nξ
n for

ξ ∈ [−1, 1].

Proof. We substitute in the basis expansion of φ into the definition of the dual activation and then utilize
the result of Proposition 2 with linearity of expectation. Namely,

φ̌(ξ) = E(u,v)∼N (0,Λ)[φ(u)φ(v)]

= E(u,v)∼N (0,Λ)

[(∞∑
n=0

anhn(u)

)(∞∑
m=0

amhm(v)

)]

= E(u,v)∼N (0,Λ)

[(∞∑
n=0

a2
nhn(u)hn(v)

)]

=

∞∑
n=0

a2
nξ
n

Theorem 1 implies the following key properties of the NNGP that would be nontrivial to observe otherwise.

Corollary 2. Let φ ∈ L2(µ) be an activation function and let φ̌ denote the dual activation. Then, φ̌ satisfies
the following:

(a) φ̌ is non-decreasing and convex in [0, 1].

(b) (φ̌)′ = ˇ(φ′) (the dual commutes with differentiation).

(c) φ̌ is continuous in [−1, 1] and smooth (infinitely differentiable) in (−1, 1).

(d) The range of φ̌ is given by [−‖φ‖2L2(µ), ‖φ‖
2
L2(µ)].

We leave the proofs as exercises to the reader. We lastly remark that when computing the dual activation
function, it is often convenient to normalize the activation φ such that ‖φ‖L2(µ) = 1 to avoid additional
constants in derivations. In particular, for the ReLU activation, this normalizing constant is

√
2 (as will be

shown in homework), and so we will compute the infinite width limits of neural networks with the normalized
activation φ(x) =

√
2 max(x, 0).

With more tools to compute the NNGP in hand, we turn to analyzing the performance of the NNGP in
practice. In particular, we will show that taking the NNGP for increasingly wide networks leads to better
generalization performance, as predicted by the double descent curve.

4 The Benefit of Over-parameterization
Thus far, we have connected kernel methods to training infinitely wide neural networks via the NNGP,
but we have not yet analyzed the effectiveness of using the NNGP over simply using a finite width feature
map. Naturally, when network width is large, solving kernel regression with the NNGP offers a clear
computational advantage. Remarkably, as we will now show empirically, using the NNGP also leads to

5

Training Data(b)

Network Width Network Width

M
SE

10
0%

 -
Ac

cu
ra

cy

(c) (d)

Data Distribution(a)

Figure 2: A comparison between using the NNGP for a 1-hidden layer fully connected network with sine
activation function and training the last layer of corresponding finite width networks. (a) A visualization of
the data distribution used for the task. The data consists of two concentric circles with red points having
class label y = −1 and blue points having class label y = 1. (b) A visualization of the 20 samples used to
train all models. (c) The training and test mean squared error as a function of network width (shown in
green). We see that wider models achieve the lowest test loss even though they interpolate the data, and
that the test loss limits to that of the NNGP (shown in black). Furthermore, the maximum loss occurs when
network width equals the number of samples. The subfigures illustrate the functions learned at network
widths of 1, 20, and 8192 respectively. (d) The training and test error (100% - accuracy) as a function of
network width. Again, increasing width leads to improved accuracy on this task.

improved generalization over the corresponding finite-width feature maps. We begin with a simple empirical
demonstration of this phenomenon when classifying data drawn from two concentric circles of differing class
label, i.e. Example 1 from Lecture 3.

Example 4. Let training samples and labels be drawn according to the distribution (shown in Fig. 2a)
consisting of two concentric circles with differing class label. We consider the setting in which we only
observe 10 samples from each of the circles for training, as shown in Fig. 2b, and evaluate our trained
models on 1000 samples from test data drawn from the true distribution. We measure the performance of
the model via the error, which is just 100% minus the accuracy, and via the mean squared error between the
predictions and the true labels.

In Figs.2c and d (and Appendix B Fig.4), we compare the performance of the NNGP to that of neural
networks of finite width where only the last layer is trained. In particular, we consider the NNGP for the
activation functions φ(x) = C1 sin(x) where C1 =

√
e2

e2−1 and φ(x) =
√

2 max(0, x), which are given as
follows:

1. For φ(x) = C1 sin(x): Σ(x, x̃) = C2
1

[
exp

(
− 1

2 (‖x‖22 + ‖x̃‖22) + xT x̃
)
− exp

(
− 1

2 (‖x‖22 + ‖x̃‖22)− xT x̃
)]

2. For φ(x) =
√

2 max(0, x): Σ(x, x̃) = 1
π

(
xT x̃

(
π − arccos

(
xT x̃

‖x‖2‖x̃‖2

))
+

√
‖x‖22‖x̃‖22 − (xT x̃)

2

)
We use the pseudo-inverse to solve kernel regression when the corresponding feature map yields a semi-definite
kernel. We make the following observations regarding the trends in the figure.

1. Increasing network width well past the point of achieving 0 training loss (i.e. interpolating the training
data) leads to lower test error and loss.

2. The model width that yields the worst performance occurs roughly when the width is equal to the number

6

Model Complexity
(Network Width)

Lo
ss

Over-parameterizedUnder-parameterized

Interpolation Threshold

Test Loss

Training Loss

Figure 3: A schematic depicting the double descent phenomenon shown empirically in Fig. 2c. In particular,
in the the under-parameterized (or classical) regime, we observe traditional overfitting: we are unable to
interpolate the data and as the training loss decreases, the test loss increases. In the over-parameterized
(or modern) setting, all models perfectly fit the training data, but the test loss remarkably decreases as the
model complexity (for our purposes, neural network width increases. Additionally, as observed in Fig. 2,
the loss is maximized at the interpolation threshold, which occurs when the model complexity is near the
number of training examples.

of training examples.

Remarks. The example above illustrates the benefit of using over-parameterized models, i.e. those that
can perfectly fit training data, in machine learning. This phenomenon is indeed quite general [1, 5, 9, 10]
and is characterized by the double descent curve [5] (See Fig. 3). Moreover, there is an emerging theoretical
understanding of the benefit of over-parameterization [2, 6, 8], and an active area of research involves
formally characterizing the error as a function of model capacity (e.g. network width). We point the
interested reader to [3, 4] for reviews of recent work in the area. For the purposes of this course, the benefit
of over-parameterization is a key observation motivating the use of all of the methods in this course.

5 Discussion
In this lecture, we made a first, simple connection between solving kernel regression and training the last
layer of a 1 hidden layer neural network. As network width approached infinity, we provided conditions
under which we could explicitly calculate a closed form for the kernel, named the NNGP. We then provided
machinery based on the theory of dual activations to simplify computation of the NNGP in general. Lastly,
we compared the performance of the NNGP with that of training the last layer of finite width networks. We
observed that increasing network width led to improved generalization, thus motivating the computational
and generalization benefits of the NNGP. Indeed, the last section highlighted an important theme of the
course: the kernels corresponding to infinite width limits are often simple to compute and use, but remarkably,
also lead to results that are competitive with training finite width neural networks.

In the next lecture, we will extend our simple NNGP connection between kernel regression and training
the last layer of a network to the more powerful Neural Tangent Kernel (NTK) connection between kernel
regression and training all layers of an infinitely wide neural network. The tools developed based on the
theory of dual activations will drastically simplify computation of the NTK and allow us to easily compute
the NNGP and NTK for deep fully connected networks.

References
[1] S. Arora, S. S. Du, Z. Li, R. Salakhutdinov, R. Wang, and D. Yu. Harnessing the Power of Infinitely

Wide Deep Nets on Small-data Tasks. In International Conference on Learning Representations, 2020.

7

[2] P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler. Benign overfitting in linear regression. Proceedings
of the National Academy of Sciences, 117(48):30063–30070, 2020.

[3] P. L. Bartlett, A. Montanari, and A. Rakhlin. Deep learning: a statistical viewpoint. Acta Numerica,
30:87–201, 2021.

[4] M. Belkin. Fit without fear: remarkable mathematical phenomena of deep learning through the prism
of interpolation. Acta Numerica, 30:203–248, 2021.

[5] M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-learning practice and the
classical bias–variance trade-off. Proceedings of the National Academy of Sciences, 116(32):15849–15854,
2019.

[6] M. Belkin, D. Hsu, and J. Xu. Two models of double descent for weak features. Society for Industrial
and Applied Mathematics Journal on Mathematics of Data Science, 2(4):1167–1180, 2020.

[7] A. Daniely, R. F. Frostig, and Y. Singer. Toward deeper understanding of neural networks: The power
of initialization and a dual view on expressivity. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems. Curran Associates, Inc., 2016.

[8] T. Hastie, A. Montanari, S. Rosset, and R. J. Tibshirani. Surprises in high-dimensional ridgeless least
squares interpolation. arXiv:1903.08560, 2019.

[9] J. Lee, S. S. Schoenholz, J. Pennington, B. Adlam, L. Xiao, R. Novak, and J. Shol-Dickstein. Finite
Versus Infinite Neural Networks: an Empirical Study. In Advances in Neural Information Processing
Systems, 2020.

[10] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever. Deep double descent: Where
bigger models and more data hurt. In International Conference in Learning Representations, 2020.

[11] R. Novak, L. Xiao, J. Hron, J. Lee, A. A. Alemi, J. Sohl-Dickstein, and S. S. Schoenholz. Neural
Tangents: Fast and easy infinite neural networks in Python. In International Conference on Learning
Representations, 2020.

[12] R. O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[13] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in Neural
Information Processing Systems, 2007.

A Dual Activation of ReLU
Proposition 3 (NTK for 1 Hidden Layer ReLU). Assume ‖x‖2 = ‖x′‖2 = 1, and let c =

√
2 and ξ = xTx′.

Then,

φ̌(ξ) = c2E(u,v)∼N (0,Σ)[φ(u)φ(v)] =
1

π
(ξ(π − cos−1(ξ)) +

√
1− ξ2)

φ̌′(ξ) = c2E(u,v)∼N (0,Σ)[φ
′(u)φ′(v)] =

1

π
(π − cos−1(ξ))

Proof. Below is the evaluation of φ̌(ξ) for the function φ(x) = 1x>0 (the indicator function that is 1 for
x > 0 and 0 for x ≤ 0). One can proceed analogously to derive the dual activation of piece-wise polynomial
functions. Consider ξ ∈ (−1, 1):

φ̌(ξ) = 2E(u,v)∼N (0,Σ)[φ(u)φ(v)] =
1

π
√

1− ξ2

∫ ∞
0

∫ ∞
0

exp

(
−u

2 + v2 − 2uvξ

2(1− ξ2)

)
dudv

8

Now, we make the substitution u = r cos
(
θ
2 + π

4

)
and v = r sin

(
θ
2 + π

4

)
. We use the following trignometric

identity to simplify uv:

2uv = 2r2 cos

(
θ

2
+
π

4

)
sin

(
θ

2
+
π

4

)
= 2

r2

2

(
sin
(
θ +

π

2

)
− sin(0)

)
= r2 cos(θ)

Thus, we have that:

φ̌(ξ) =
1

2π
√

1− ξ2)

∫ π
2

−π2

∫ ∞
0

r exp

(
−r

2 − r2 cos(θ)ξ

2(1− ξ2)

)
drdθ

We now evaluate the integral corresponding to r and to simplify notation, let c = 1−cos(θ)ξ
(1−ξ2) . We then have:∫ ∞

0

r exp

(
−r

2c

2

)
dr =

∫ ∞
0

exp (−uc) du =
1

c
=

1− ξ2

1− cos(θ)ξ

Thus,

φ̌(ξ) =

√
1− ξ2

2π

∫ π
2

−π2

1

1− cos(θ)ξ
dθ =

√
1− ξ2

π

∫ π
2

0

1

1− cos(θ)ξ
dθ (3)

We can evaluate this integral directly using the following substitutions:

u = tan

(
θ

2

)
dθ =

2

u2 + 1
du cos(θ) =

1− u2

u2 + 1

We then get:

φ̌(ξ) =

√
1− ξ2

π

2√
1− ξ2

tan−1

(√
1 + ξ√
1− ξ

)
=

1

π
(π − cos−1(ξ))

The last equality follows from the identities below (assuming ξ = cos(φ)):

tan−1

(
1 + cos(φ)

sin(φ)

)
= tan−1

 1

tan
(
φ
2

)
 =

π

2
− tan−1

(
tan

(
φ

2

))
=
π

2
− φ

2

9

B Empirical Evaluation with ReLU NNGP

Training Data(b)

Network Width Network Width

M
SE

10
0%

 -
Ac

cu
ra

cy

(c) (d)

Data Distribution(a)

Figure 4: A comparison between using the NNGP for a 1-hidden layer fully connected network with ReLU
activation function and training the last layer of corresponding finite width networks. The data distribution
in (a), (b) are the same as those of Fig. 2. We again see the same trends as in Fig. 2. Namely, in (c) and (d),
we observe that, in the interpolating regime, increasingly larger models lead to lower loss and error, which
both limit to that of the infinite width model corresponding to the NNGP. We also observe in (c) that the
loss is again maximized when the number of examples equals the width.

10

	Introduction
	Random Feature Models and Neural Network Gaussian Processes
	Dual Activations
	The Benefit of Over-parameterization
	Discussion
	Dual Activation of ReLU
	Empirical Evaluation with ReLU NNGP

