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1 Introduction
Over the past decade, interest in machine learning research has spiked dramatically, with advancements in
deep learning being a significant driving force. Indeed, deep learning has transformed many areas in computer
science including computer vision [7, 11], natural language processing [3], and reinforcement learning [13].
Unfortunately, given the rapid pace of progress in deep learning, a newcomer looking for a simple set of
guiding principles for building machine learning applications can be easily overwhelmed by the nuances of
training deep networks.

In particular, the flexibility provided by the vast number of choices of network hyper-parameters and archi-
tectures in deep learning can be a double-edged sword. When trying to construct a neural network from
scratch for any given task, the newcomer may naturally ask (1) how many layers to use or (2) what type of
layers to use. There remains no clear, simple answer to these questions, and suggestions for these choices
seem to be governed by rapidly evolving results from empirical successes. Prominent examples appear in
the domain of image classification: (1) after iterating through several state-of-the-art models over the past
5 years [7, 8, 21, 25], the impact of network architecture on performance seems to remain unclear; (2) recent
experiments question whether the ubiquitous convolutional layer is even necessary for producing effective
image classifiers [4, 22].

On the other hand, classical kernel-based machine learning methods (e.g. support vector machines (SVM)
or kernel regression) while conceptually simple and easy to implement, appear to lack both the flexibility
and empirical successes of deep neural networks. Indeed, there is no simple method for constructing a
kernel function based on the application domain, and classical approaches often involved applying standard
kernels (e.g. Gaussian kernels) to features crafted from the data. For example, while SVM approaches based
on hand-crafted features [20] were the state-of-the-art approach for achieving competitive performance on
ImageNet [18], kernel methods have since then been outperformed by neural networks in these tasks since
AlexNet in 2012 [11]. If kernel methods had the flexibility and effectiveness of neural networks, then given
their simplicity, these models would offer a newcomer-friendly alternative to neural networks.

We begin this course by utilizing the recently-discovered connection between neural networks and kernel
methods given by the Neural Tangent Kernel (NTK) [9] to present a class of kernel methods that are simple,
flexible, and competitive in practice. At a high level, the NTK serves as a tool for computing a kernel
corresponding to nearly any neural network architecture, and importantly, solving kernel regression with the
NTK is equivalent to training the corresponding neural network provided the layer-wise widths are sufficiently
large (e.g. approach infinity). Below, we highlight some recent work demonstrating the effectiveness of this
approach.

Example 1 (NTK Regression and Classification). Recent work [2] demonstrated that using SVMs with the
NTK corresponding to ReLU networks with at most 5 hidden layers generally outperformed random forests,
SVMs with the Gaussian kernel, and finite width neural networks on 90 tasks from the UCI database [6]. This
work also demonstrated that the NTK for convolutional networks, i.e. the CNTK, outperformed convolutional
networks (including ResNets) on datasets with at most 640 images.
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Figure 1: Examples of feature learning in neural networks and recursive feature machines (RFMs). When
trained to classify whether celebrity images containing glasses or a smiling celebrity, both models learn fea-
tures associated with the prediction task. Moreover, both models identify nearly identical features (Pearson
correlations greater than 0.9.

Example 2 (CNTK for Image Classification). The work [12] presents a thorough empirical comparison
between the performance of the CNTK and corresponding finite width convolutional networks on the CIFAR10
image classification task [10]. This work generally demonstrated that the CNTK is competitive with training
convolutional networks. In particular, the CNTK corresponding to a convolutional ReLU network with a
fully connected last layer consistently outperforms the corresponding finite width network, and the CNTK for
a convolutional ReLU network with global average pooling [1] is roughly 3% worse than the corresponding
finite width network (77% vs. 80.61% test accuracy in Supplementary Table S1).

Example 3 (NTK/CNTK for Matrix/Image Completion). Lastly, the work [17] demonstrates the effective-
ness of the NTK and CNTK for matrix and image completion tasks. In particular, this work demonstrates
that the NTK outperforms prior methods for virtual drug screening, and that the CNTK generally outperforms
modern neural network architectures [23] for image inpainting while also having a run-time advantage.

Given its simplicity and effectiveness, the NTK serves as a powerful alternative to neural networks in several
applications. Yet, as shown in recent work [5, 19], there are certain classes of problems for which neural
networks have a significant advantage over NTKs. What are key properties of these problems that lead to a
gap between neural networks and NTKs, and what is the mechanism driving the success of neural networks
on these problems?

Feature learning in neural networks. A mechanism of particular interest is the one by which neural
networks “learn features.” Indeed, ability of neural networks to learn features from data is thought to be a
central contributor to their success [19, 24]. While we defer a mathematical definition of feature learning, we
use this terminology to refer to the ability of neural networks to identify and reduce to features most relevant
for prediction. As illustrative examples, when classifying whether a celebrity has a glasses or is smiling, fully
connected neural networks subset to the region of pixels corresponding to these features (See Fig. 1) .

Recursive Feature Machines (RFMs). Toward the end of this course, we will discuss recent work that
identifies a mechanism driving feature learning in neural networks [16]. In particular, we will demonstrate
that feature learning in neural networks is connected to a statistical estimator known as the expected gradient
outer product. We will subsequently leverage this insight to develop Recursive Feature Machines (RFMs),
which are kernel methods that learn features. We will show that RFMs are simple, interpretable, and effective
machine learning models. In particular, we demonstrate that:
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1. Features learned by RFMs accurately capture those learned by fully connected neural networks.

2. RFMs produce state-of-the-art performance on tabular datasets.

3. RFMs shed light on remarkable deep learning phenomena, including identifying spurious features and
biases learned by neural networks.

General Course Remarks. While the goal of the course is to demonstrate that the NTK and RFMs are
simple and easy-to-use methods in practice, we will simultaneously present a full theoretical development of
these methods starting from the basics of linear and kernel regression.

2 Course Overview
Below, we breakdown the course with an overview of the content in each lecture. We note that each lecture
will have a theoretical component followed by empirical examples to make the theory concrete.

Lecture 2: Linear Regression. We begin the course with a review of linear regression, i.e. finding a line
of best fit to data. The ideas from linear regression lay the foundation for kernel regression and will be crucial
to understanding why kernel regression with the NTK is a conceptually simple and easy to use method. In
particular, we will cover key aspects of the linear regression framework including a derivation of the fact
that gradient descent leads to a minimum norm solution for linear regression given by the Moore-Penrose
pseudoinverse.

Lecture 3: Kernel Regression. We extend the linear regression framework to kernel regression by
performing linear regression after applying a nonlinear transformation, i.e. a feature map, to the data. We
demonstrate that kernel regression is tractable even when the feature map has an infinite dimensional range
(corresponding to a Hilbert space). In particular, we review key results including the Representer theorem
and the kernel trick that enable kernel regression to be easily implemented. We lastly review and present
examples of kernel regression with popular kernels including the Gaussian and Laplace kernels.

Lecture 4: Neural Networks. We will provide a brief introduction to neural networks. While this is a
vast area, we will cover the following fundamental aspects of neural networks: (1) Basic architectures (fully
connected and convolutional networks) ; (2) network width and depth ; (3) layer initialization schemes ; (4)
training methodology (gradient descent, stochastic gradient descent). Given the complexity of modeling and
training choices, we will provide a short checklist of guiding principles for training neural networks. We will
also provide some code in PyTorch [15] to familiarize the reader with a typical workflow for training neural
networks.

Lecture 5: NNGP, Dual Activations, and Over-parameterization. After reviewing the fundamen-
tals of kernel regression and neural networks, we connect the kernel regression framework to infinitely wide
neural networks where only the last layer is trained. In particular, under certain conditions on the initial-
ization, training the last layer of an infinite width network corresponds to solving kernel regression with the
Neural Network Gaussian Process (NNGP). We present analytical tools to compute the NNGP in practice
and utilize the theory of dual activations to simplify the form of the NNGP. We then provide a first example
of the double descent phenomenon in machine learning. Namely, we show that increasing network width
when training only the last layer leads to improved generalization with the infinite width limit given by the
NNGP yielding the best performance.

Lecture 6: NTK Origin and Derivation. With the tools from previous lectures in hand, we finally
present the main connection between training all layers of an infinitely wide neural network and solving
kernel regression the Neural Tangent Kernel (NTK). We first show that the NTK arises as a linearization of
a neural network around its initial weights, and this approximation becomes increasingly accurate as network
width increases. We then present a simple argument demonstrating that this approximation remains accurate
throughout training, which implies that solving kernel regression with the NTK is remarkably equivalent
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to training an infinitely wide neural network. Utilizing the tools for computing the NNGP, we compute a
closed for the NTK in terms of dual activation functions. As we did for the NNGP, we then lastly present
empirical examples highlighting the double descent phenomenon by comparing the performance of networks
of increasing width to that of the NTK.

Advanced Topics (Subject to change based on student interest).

Lecture 7: NTK of Deep Neural Networks and the CNTK. Thus far, we have presented tools to
compute the NTK/NNGP for fully connected networks with 1 hidden layer. We now present a derivation
of the NTK/NNGP for networks of arbitrary depth. In particular, we show that the NTK/NNGP for a
network of depth L can be written recursively in terms of the NTK/NNGP for a network of depth L−1 and
are thus simple to compute in practice. In order to showcase the flexibility of the NTK framework, we then
present a simple example of computing the NTK for a 1 hidden layer convolutional network, i.e. the CNTK.
We highlight the impact of changing the last layer from a fully connected layer to a global average pooling
layer, and indicate why the latter is more expensive to compute. We lastly present experiments utilizing the
Neural Tangents library [14] demonstrating the effectiveness of the NTK/CNTK in practice.

Lecture 8: NTK and CNTK for Matrix Completion. We will review the contents of [17], which
derives the NTK and CNTK for matrix completion problems. This work provides two applications of these
derivations: (1) virtual drug screening and (2) image inpainting. This work demonstrates that the NTK is
state-of-the-art for virtual drug screening and that the CNTK generally outperforms a variety of convolutional
networks used for image inpainting.

Lecture 9: Recursive Feature Machines (RFMs). We will review the contents of [16]. This work
identifies a mechanism driving feature learning in neural networks and subsequently uses this mechanism
to develop RFMs, which are kernel methods that learn features. This work demonstrates that (1) RFMs
accurately caputre features learned by fully connected neural networks ; (2) RFMs produce state-of-the-art-
results on tabular datasets ; and (3) RFMs shed light on a variety of remarkable deep learning phenomena.
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3 Mathematical Background and Review
We briefly review of mathematical background that will be helpful in understanding core theoretical concepts
of the course. While the methods covered in the course can be coded up and used with minimal knowledge of
the material below, a better understanding of the theoretical concepts serves especially useful for debugging,
should any code happen to go awry.

The general topics that will be covered span linear algebra, analysis, probability, and statistics. We begin
with mathematical notation that will be used commonly throughout the course. We will place blue text to
indicate the lectures where the material will be used.

3.1 Notation
In this course, we abide by the following notation:

• Z: the space of integers. Z+: the space of positive real numbers.

• R: the space of real numbers. R+: the space of positive real numbers.

• C: the space of complex numbers

• Rd: the space of d-dimensional real-valued (column) vectors

• Sd−1: the unit sphere in d dimensions (i.e. Sd−1 = {x ∈ Rd ; ‖x‖2 = 1})

• Rm×n: the space of real-valued m× n matrices

• If A ∈ Rm×n, we let Ai,j denote the i, j entry of A. We let Ai,: ∈ R1×n denote row i of A. Similarly,
A:,j ∈ Rm is column j of A.

• Given A ∈ Rm×n, the matrix AT ∈ Rn×m is the transpose of A, with ATi,j = Aj,i.

• To iterate through a matrix in row-major order is to observe consecutive entries from left to right,
reading an entire row before proceeding to the next.

• Rm × Rn = {(x, y) ; x ∈ Rm, y ∈ Rn}

• f : Rm → Rn denotes a function f from Rm to Rn

• A function φ : R→ R acts element-wise on x ∈ Rd when:

φ(x) =


φ(x1)

φ(x2)
...

φ(xd)


• Given f : Rd → R, we let ∇f : Rd → Rd and Hf ∈ Rd → Rd×d denote the gradient and Hessian of f

respectively, where:

∇f =


∂f
∂x1

∂f
∂x2

...
∂f
∂xd

 ; Hf =



∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xd

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xd

...
... . . .

...
∂2f

∂xd∂x1

∂2f
∂xd∂x2

. . . ∂2f
∂x2

d


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3.2 Linear Algebra
3.2.1 Orthogonal Matrices

Orthogonal matrices are particularly important in the analyses in this course. They will arise in Eigen-
decompositions and Singular Value Decompositions, which will be used to simplify the analysis of linear and
kernel regression (Lectures 2 and 3).

Definition 1. An orthonormal basis, {v1, ..., vn} of a vector space with inner product 〈vi, vj〉, satisfies:

〈vi, vj〉 =

0 if i 6= j

1 if i = j
.

Namely, any pair of vectors in the basis must be perpendicular (have inner product 0), and every vector in
the space must be a unit vector.

Definition 2. A matrix A ∈ Rn×n is orthogonal if its rows and columns form an orthonormal basis.

Definition 1 implies that for a real orthogonal matrix A: ATA = AAT = I. Hence, AT = A−1.

3.2.2 Rank, Eigendecomposition, Singular Value Decomposition

The Eigendecomposition and Singular Value Decomposition (SVD) are matrix decompositions commonly
used in machine learning and statistics. We will utilize this decomposition when analyzing convergence of
linear regression (Lecture 2) and when visualizing top eigenvectors of feature matrices (Lecture 9).

Definition 3. The rank of a matrix is the dimension of the space spanned by its rows (or columns).

Definition 4. A vector v is an eigenvector of matrix A, with eigenvalue λ, if

Av = λv.

Two useful facts about eigenvalues are that the trace of a matrix corresponds to the sum of its eigenvalues,
and the determinant corresponds to the product of the eigenvalues.

For square matrices, there exists a specific decomposition called the eigendecomposition, which is a fac-
torization of the matrix into the product of three matrices containing its corresponding eigenvalues and
eigenvectors as follows.

Definition 5. The eigendecomposition of A ∈ Cn×n, with eigenvectors vi and corresponding eigenvalues
λi, for i ∈ [n], is given by:

A =

 | | . . . |
v1 v2 . . . vn

| | . . . |



λ1 . . . 0
...

. . .
...

0 . . . λn


 | | . . . |
v1 v2 . . . vn

| | . . . |


−1

= QΛQ−1.

Definition 6. The singular value decomposition (SVD) of a matrix is the factorization of a real matrix,
A ∈ Rm×n into a product of three matrices, U,Σ,V, such that:

• U ∈ Rm×r has columns forming an orthonormal basis for the column space of A.

• Σ ∈ Rr×r is a diagonal matrix whose diagonal elements are known as the singular values of A.

• V ∈ Rr×n has columns forming an orthonormal basis for the row space of A.

Note that r corresponds to the rank of the matrix A. Then, we have:

A = UΣVT.
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From the above, it follows that the rank of a matrix can also be defined as the number of nonzero singular
values. We let σi(A) be the ith singular value of A for i ∈ {1, 2, . . . , r}.

Key Properties of SVD: Note that the SVD exists for any real matrix A, unlike the eigendcomposition.
As U, V are orthonormal matrices, we have UUT = Im×m and V TV = In×n. Hence, we have AAT = UΣ2UT

and ATA = V Σ2V T . In particular, these are also respectively the eigendecompositions of AAT and ATA,
and so we conclude σi(A)2 = λi. Naturally, given a matrix A, we can recover its left and right singular
matrices U, V by computing the eigendecomposition of AAT and ATA.

3.2.3 Moore-Penrose Inverse

The Moore-Penrose inverse, often called pseudoinverse, is a generalization of the matrix inverse which can be
applied to non-square matrices. Notably, while the regular inverse only exists under certain conditions, the
pseudoinverse always uniquely exists for matrix, A. We will use the Moore-Penrose pseudoinverse to solve
linear regression when the number of samples is not equal to the dimension of the data (See Lecture 2).

Definition 7. The Moore-Penrose Inverse of a matrix A ∈ Rm×n, denoted A†, satisfies:

• AA†A = A

• A†AA† = A†

• (AA†)T = AA†

• (A†A)T = A†A

The Moore-Penrose pseudoinverse is often convenient to write in terms of the SVD of a matrix.

Lemma 1. Let A ∈ Rm×n and let A = UΣV T given by the SVD. Then, A† = V Σ†UT .

We leave it to the reader that V Σ†UT satisfies the conditions of the pseudoinverse above. There are three
key special cases, for which a closed form of the pseudoinverse is easy to write out.

• m = n and A is full-rank:

A† = A−1.

• m < n and rows of A are linearly independent:

A† = AT (AAT )−1.

• m > n and columns of A are linearly independent:

A† = (ATA)−1AT .

3.2.4 Projection and Orthogonal Decomposition

A projection in linear algebra corresponds to the notion of restricting the representation of a vector from one
space to a subspace. The notion of projection is useful for understanding the solutions to linear and kernel
regression (See Lectures 2 and 3). An orthogonal projection matrix P ∈ Rn×n satisfies:

P = P2 and PT = P.

Orthogonality in projection implies that the projection matrix does not rescale the components being pro-
jected. Formally, this implies that an orthogonal projection matrix P : W → W satisfies the property
〈Px, y〉 = 〈x,Py〉 for all x, y ∈W .

For a vector, u ∈ Rn, one can define the orthogonal decomposition with respect to a subspace T ⊆ Rn.
Specifically, we can decompose u as:

u = v︸︷︷︸
∈T

+ w︸︷︷︸
∈T ⊥

.

Decompositions of this form are particularly useful for dimensionality reduction.
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3.3 Analysis
3.3.1 Norms

We will be using norms throughout this course, but non-Euclidean norms will mostly arise in Lecture 3 and
Lecture 9. We begin with the definition of a norm below and then list key examples of matrix and vector
norms, which are helpful in theoretical analysis of machine learning methods.

Definition 8. Let V be a vector space over R. A norm ‖ · ‖ : V → R+ is a function such that for any
u, v ∈ V and a ∈ R:

(a) ‖u‖ = 0 iff u = 0 (Positive Definiteness).

(b) ‖au‖ = |a|‖u‖ (Homogeneity).

(c) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ (Triangle Inequality).

Below are several examples of norms that are commonly used in machine learning analyses. We encourage
the reader to double check that the examples below are all norms.

Definition 9. The Frobenius norm of an m× n matrix A, denoted ‖A‖F , is the square root of the sum
of the magnitudes of its elements:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|Ai,j |2.

From the above definition, it follows that the Frobenius norm can also be represented as the square root of
the sum of the squares of the singular values of A, as follows:

‖A‖F =

√√√√min(m,n)∑
i=1

σi(A)2.

Another useful formulation of the Frobenius norm, for A ∈ Rm×n, is the following:

‖A‖F =
√

Tr(AAT ).

Definition 10. The nuclear norm of an m×n matrix A, denoted ‖A‖∗, is the sum of its singular values:

‖A‖∗ =

min(m,n)∑
i=1

σi(A).

Definition 11. The `2 norm of a length-n vector x, denoted ‖x‖2, is the square root of the sum of the
magnitudes of its elements:

‖x‖2 =

√√√√ n∑
i=1

|xi|2.

Definition 12. The spectral norm of a matrix A ∈ Rm×n, denoted ‖A‖2, is the maximum singular value
of A:

‖A‖2 = σ1(A).

We can also represent the spectral norm as follows, by relating it to the vector `2 norm:

‖A‖2 = max
‖x‖2=1

|Ax|2.

Essentially, the spectral norm represents the maximum amount by which the matrix A can “stretch” a unit
vector, which exactly corresponds to its maximal singular value.
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Definition 13. The L∞ norm of an m×n matrix A, denoted ‖A‖∞, is the maximum row-wise magnitude
sum of A:

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |.

3.3.2 Inner Products

The inner product over a vector space V , often denoted 〈·, ·〉, is a function which maps two elements in the
vector space to a scalar. We will be utilizing inner products heavily throughout the course (See Lectures 2,
3, 5, and 6).

For real-values vectors, x, y ∈ Rn, we can use the well-known dot product as the inner product, thus obtaining:

〈x, y〉 = x · y = yTx =

n∑
i=1

xiyi.

This inner product has the functional form: 〈·, ·〉 : Rn × Rn → R. Furthermore, the dot product over
real-valued vectors has a few key properties. Notably:

x · y = ‖x‖2‖y‖2 cos θ.

In the above equation, θ corresponds to the angle between the two vectors in Euclidean space. In machine
learning, if x and y were, for example, the predicted and actual label for a specific model training example,
cos θ is commonly referred to as the cosine similarity metric (in statistics, this is just the correlation). In
addition, for two real vectors x, y having nonzero `2 norm, if their dot product is 0, this corresponds to
θ = π

2 , implying that the vectors are orthogonal. Finally, if x = y, we have:

〈x, x〉 = x · x = xTx = ‖x‖22.

For complex-valued vectors, x, y ∈ Cn, we can use the dot product with complex conjugate to define an inner
product as follows

〈x, y〉 =

n∑
i=1

xiyi ;

whereyi denotes the complex conjugate of yi. This inner product has the functional form: 〈·, ·〉 : Cn×Cn → C.
A similar angle-relation holds for the complex dot product: ‖x‖2‖y‖2 cos θ = Re(x · y). This inner product
will importantly be used in Lecture 5.

For matrices A,B ∈ Rm×n, the trace inner product is given by:

〈A,B〉 = Tr(ATB).

The above is often called the Frobenius inner product due to its relation to the Frobenius norm. More
generally, inner products are naturally related to norms. Indeed a norm, ‖ · ‖ is induced by an inner product
〈·, ·〉 via the relation ‖ · ‖ =

√
〈·, ·〉.

As we will see in Lecture 5, there are also inner products on functions. Let f, g be real-valued, continuous
functions defined on interval [a, b] ⊂ R. The L2 inner product over the space of such functions is given by:

〈f, g〉 =

∫ b

a

f(x)g(x)dx.

Correspondingly, the L2 norm of this space, for a function f , is then given by:

‖f‖L2 =
√
〈f, f〉 =

(∫ b

a

(f(x))2dx

) 1
2

.
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3.3.3 Matrix Gradients

Matrix and vector gradients are commonplace in the analysis of neural networks. We will be commonly
computing such gradients in Lectures 2, 3, 4, 5, 6. The key to taking matrix/vector gradients is to simply
compute the partial derivative with respect to 1 entry at a time and then re-organize the entries into the
right shape to see if a clear pattern emerges. The standard text to recommend for examples of such gradient
computations is The Matrix Cookbook. Problem set 1 requires the computation of such a gradient since it
will be used in the analysis of linear and kernel regression.

Below, we present a few key examples, for matrix A ∈ Rm×n.

• Trace: ∂Tr(A)
∂A (let m = n for this case)

To calculate the gradient with respect to the trace, consider the element-wise gradient first. The trace
is simply the sum of the diagonal elements of A, or Tr(A) = a11 + a22 + · · · + ann. Note that the
partial derivative of Tr(A) is 0 with respect to any non-diagonal elements of A, and 1 with respect to
the diagonal. Thus, the gradient is simply the identity:

∂Tr(A)

∂A
= In×n.

• Frobenius Norm Squared: ∂‖A‖2F
∂A

First, we expand the norm as follows: ‖A‖2F = Tr(AAT ). Now, consider each term in the matrix
AAT . Each entry is formed as the dot product of two rows in A. Specifically, (AAT )ij is the dot
product of the i-th and j-th rows in A, so (AAT )ij = ai1aj1 + · · ·+ ainajn. Since we take the trace of
this matrix, we obtain Tr(AAT ) =

∑m
i=1

[
a2i1 + · · ·+ a2in

]
=
∑m
i=1

∑n
j=1 a

2
ij . Note that the derivative

of the trace with respect to any element in A is then simply given by:

∂Tr(AAT )

∂aij
=
∂
∑m
i=1

∑n
j=1 a

2
ij

∂aij
= 2aij .

Thus, it follows that the derivative of the original formulation is given by:

∂‖A‖2F
∂A

= 2A.

3.3.4 Taylor Series and Approximation

The Taylor Series is an invaluable function approximation tool, which in this course, is helpful in the
derivation of the NTK (See Lecture 6). We build on the single-variable n-th order Taylor approximation
when approximating f(x) around a point y:

f(x) ≈ f(y) +
f ′(y)

1!
(x− y) +

f ′′(y)

2!
(x− y)2 + · · ·+ f (n)(y)

n!
(x− y)n.

In the case of multivariate functions, we replace the derivative with a gradient, as follows. Consider a function
f : Rn → R. We can construct a first-order approximation to f(x) around a vector y ∈ Rn, as follows:

f(x) ≈ f(y) +∇f(y)T (x− y).

While we can use higher-order gradients to obtain a more accurate expansion, the first order approximation
is sufficient for the material in this course.

3.3.5 Convexity

Convex analysis is the foundation of many well-known algorithms in machine learning, including gradient
descent and its variants. A full review of optimization is out of scope for this course, but we expect the reader
to understand that the loss landscape for linear and kernel regression is convex, implying the existence of a
unique minimum norm solution (See Lectures 2 and 3). The definition of convexity that is simple to verify
for the squared loss used in Lectures 2 and 3 is the following.
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Definition 14. A twice-differentiable, real-valued function f : Rd → R is said to be convex if and only if
for all x̃, x ∈ Rd:

xTHf (x̃)x ≥ 0 ,

i.e. the Hessian of f , Hf , is positive semi-definite at all points x̃ ∈ Rd.

3.4 Probability
Probability theory naturally arises in several analyses in machine learning. We will mainly use simple
concepts from probability theory (e.g. computing expectations of functions of random variables) in Lectures
5, 6, 7, 8, 9. Below, we begin with a brief introduction to notation.

• PX(x) denotes the probability, with respect to random variable X, that X takes the value x.

• X ∼ f indicates that random variable X is distributed with density function f .

• For probability density function f , EX∼f [X] denotes the expected value of X.

• N (µ, σ2) denotes the Gaussian distribution with mean µ and standard deviation σ.

3.4.1 Expectation

The expectation of a discrete random variable, X, taking n possible values, is given by:

EX [X] =

n∑
i=1

xi · PX [xi].

Analogously, the expectation of a continuous random variable, X, with probability density function, f , is
given by:

EX [X] =

∫ ∞
−∞

xf(x)dx.

Consider, for example, a random variable X distributed as a Gaussian with mean 0 and standard deviation
1. The probability density function of this continuous random variable is given by:

f(x) =
1√
2π

exp

(
−x

2

2

)
.

We now evaluate the expectation of X and verify that EX∼N (0,1)[X] = 0.

EX∼N (0,1)[X] =
1√
2π

∫ ∞
−∞

xe−x
2/2dx

= − 1√
2π

∫ −∞
∞

eudu

= − 1√
2π
e−x

2/2
∣∣∣∞
−∞

= 0.

An important property of expectation is linearity, which states that for random variables X,Y and constants
α, β, γ ∈ R:

E[αX + βY + γ] = αE[X] + βE[Y ] + γ.

Remarkably, the above theorem makes no assumption about the independence of the random variables, and
thus holds even if X and Y are dependent.
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3.4.2 Covariance and Variance

The variance and covariance correspond to second-order terms which capture higher moments of the under-
lying distributions. These can be computed as follows.

Definition 15. The variance of a random variable, X, is given by:

V ar[X] = E[(X − E[X])2] = E[X2]− E2[X].

Definition 16. The covariance of random variables, X,Y , is given by:

Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ].

3.4.3 Properties of Gaussian Distributions

Gaussian distributions are of particular significance for this course since we will be considering the behavior
of neural networks with weights sampled i.i.d. from a Gaussian distribution (See Lectures 5 and 6). We
begin by integrating the Gaussian probability density function to show that the integral has value 1. To this
end, we are interested in evaluating integrals of the form:∫ ∞

−∞
e−cx

2

dx.

While the integral above is not straightforward to solve via classical methods, we solve it by instead
considering a double integral. Namely, we begin by letting the integral be represented by a function,
g(c) =

∫∞
−∞ e−cx

2

dx. Then, we seek to evaluate g(c)2, as follows:

g(c)2 =

(∫ ∞
−∞

e−cx
2

dx

)2

=

(∫ ∞
−∞

e−cx
2

dx

)
·
(∫ ∞
−∞

e−cy
2

dy

)
=

∫ ∞
−∞

∫ ∞
−∞

e−c(x
2+y2)dxdy.

Now, we can convert the above integral to polar coordinates by completing the square via the transformation
r2 = x2 + y2:

g(c)2 =

∫ 2π

0

∫ ∞
0

e−cr
2

rdrdθ

= 2π

∫ ∞
0

re−cr
2

dr

= −π
c

∫ −∞
0

eudu

=
π

c
eu
∣∣∣0
−∞

=
π

c
.

Thus, it follows that g(c) =
√

π
c . Hence, for c = 1

2 , we recover the normalizing constant of 1√
2π

for the
standard Gaussian distribution.

Now that we have a technique for evaluating integrals of the form:∫ ∞
−∞

e−ax
2

dx ,
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we can similarly evaluate integrals of the form:∫ ∞
−∞

e−ax
2+bx+cdx ,

by recognizing that the integrand (after completing the square) is the integral over a Gaussian distribution
with nonzero mean and variance. This technique will appear throughout the course and so, we walk through
some examples in the homework.

Another key property of Gaussian distributions is that two independent Gaussian random variables, X ∼
N (µ1, σ

2
1) and Y ∼ N (µ2, σ

2
2), have a sum whose distribution is also Gaussian. That is:

X + Y ∼ N (µ1 + µ2, σ
2
1 + σ2

2).

Remarkably, the above also holds in the multivariate Gaussian case, wherein variables are distributed with
mean vector µ and covariance matrix Σ. Furthermore, the product of a constant with a Gaussian random
variable is still Gaussian, with a scaled mean and variance. Specifically, for X ∼ N (µ, σ2), and a ∈ R, we
have aX ∼ N (aµ, a2σ2).

3.4.4 Law of Large Numbers

The final topic we review in these notes is the Law of Large Numbers, which is useful in proving properties
of neural networks at the infinite-width limit (See Lectures 5 and 6). Intuitively, the law of large numbers
states that as the number of trials of an experiment increases, the expected value and the observed value
will converge. Formally, let X1, . . . , Xn be independent, identically distributed random variables with mean
µ = EXi

[
1
n

∑n
i=1Xi

]
. If Z = 1

n

∑n
i=1Xi, then for any ε > 0, there exists N such that for n > N :

PZ (|Z − µ| < ε) > 1− ε
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