
Lecture 6: NTK Origin and Derivation

Adityanarayanan Radhakrishnan

Edited by: Max Ruiz Luyten, George Stefanakis, Cathy Cai

September 25, 2024

1 Introduction
Thus far, we established conditions under which training the last layer of an infinitely wide, 1-hidden layer
neural network is equivalent to solving kernel regression with the Neural Network Gaussian Process (NNGP).
We now present the result that training all layers of a neural network is equivalent to solving kernel regres-
sion with a kernel referred to as the Neural Tangent Kernel (NTK). We begin by introducing the idea of
approximating a neural network via linearization around initial weights, and we show that training the cor-
responding linearization is equivalent to solving kernel regression with the NTK. We then utilize the theory
of dual activations and the computation of the NNGP from the previous lecture to compute a closed form
for the NTK in terms of dual activation functions. The remarkable aspect of the linearization is that as
layer-wise widths approach infinity, training the linearization is equivalent to training all layers of a neural
network. As we did for the NNGP, we then lastly present empirical examples highlighting the double descent
phenomenon by comparing the performance of networks of increasing width to that of the NTK.

2 Linearization of Neural Networks
Following the notation from previous lectures, let X = [x(1), x(2), . . . , x(n)] ∈ Rd×n denote a training samples
and let y = [y(1), y(2), . . . , y(n)] ∈ R1×n denote training labels. Instead of using linear or kernel regression to
fit the given training data, consider instead using a neural network implementing a function f(x) : Rd → R.
In the case where our neural network has one hidden layer, the network is traditionally parameterized by
two weight matrices A ∈ R1×k, B ∈ Rk×d and an elementwise nonlinearity φ : R→ R such that:

f(x) = Aφ(Bx)

Importantly, the notation above emphasizes that the neural network is implementing a function f that acts
on samples, x. While this perspective is useful for implementation in practice, it is not necessarily easily
amenable for understanding parameter-dependent training dynamics. Indeed, it is important to remember
that the neural network is actually a map on both parameters (A,B) and samples x. Hence, to make this
relationship clear, we will instead think of a neural network as a function of both data and parameters, and
write:

f(w ;x) = Aφ(Bx) ;

where the vector w ∈ Rk+kd is a concatentation of all parameters in the neural network. Namely,

w =
[
A11 A12 . . . A1k B11 B12 . . . Bkd

]T
∈ Rk+kd

While the difference in notation seems pedantic thus far, it importantly allows for an approximation of neural
networks via Taylor series around initial weight values w(0). In particular, we will consider fixing the sample
x and linearizing (i.e. performing a first order Taylor series approximation) a neural network around these
initial weights.

1

Definition 1 (Linearization of Neural Network). Let fx(w) : Rp → R denote a neural network operating on
a fixed sample x ∈ Rd. Then, the linearization of fx(w) around initial weights w(0) is given by:

f̃x(w) = f(w(0)) +∇fx(w(0))T (w − w(0)).

Importantly, note that the linearization above is indeed equivalent to applying a linear model on top of
transformed features, which is consistent with the prior frameworks studied throughout this course. Namely,
training the linearization f̃x(w) using the MSE loss involves solving a linear regression problem after applying
the feature map ψ : Rd → Rp with ψ(x) = ∇fx(w(0)) to the samples. Note that even though the number of
neural network parameters p can be extremely large, we already have the machinery to solve linear regression
efficiently via the kernel trick. The corresponding kernel defined below is referred to as the Neural Tangent
Kernel (NTK) [2].

Definition 2 (Neural Tangent Kernel). Let fx(w) : Rp → R denote a neural network with initial parameters
w(0). The neural tangent kernel, K : Rd × Rd → R, is given by:

K(x, x̃) = 〈∇fx(w(0)),∇fx̃(w(0))〉

To make this kernel concrete for a finite width network, we provide the following simple example below.

Example 1. For x ∈ R, let fx(w) : R4 → R denote a neural network parameterized as follows:

fx(w) =
[
A11 A12

]
φ

([
B11

B21

]
x

)
= A11φ(B11x) +A12φ(B21x) ;

where w =
[
A11 A12 B11 B21

]T
. Then, for x, x̃ ∈ R:

K(x, x̃) =

〈
φ(B11x)

φ(B21x)

A11xφ
′(B11x)

A12xφ
′(B21x)

 ,


φ(B11x̃)

φ(B21x̃)

A11x̃φ
′(B11x̃)

A12x̃φ
′(B21x̃)


〉

=

2∑
i=1

φ(Bi1x)φ(Bi1x̃) +

2∑
i=1

A2
1iφ
′(Bi1x)φ′(Bi1x̃)xx̃

The term in red in the example above is similar to that appearing in the computation of the NNGP. Indeed,
as we will show in the next section, the NTK can be written as the sum of the NNGP plus a correction term,
appearing in blue above, which intuitively accounts for training more than just the last layer.

Remarks on Training a Linearized Network. Note that there is a slight subtlety in using kernel
regression with the NTK, as compared to training the linearization f̃x(w) directly. In particular, assuming
w = w(0) + w̃, we write the MSE for training f̃x(w) as follows:

L(w) =
1

2

n∑
i=1

(y(i) − f̃x(i)(w))2 ⇐⇒ L(w̃) =
1

2

n∑
i=1

(y(i) − fx(i)(w(0))−∇fx(i)(w(0))T w̃)2

Hence, to match training the linearization exactly, we must use the NTK to map from x(i) to y(i)−fx(i)(w(0))
(e.g. mapping from the original samples to corrected labels). As will be shown in the exercises, if we want
to numerically match the predictions of a trained neural network with the NTK, we will need to account for
this difference. In practice, however, it is easier to ignore the correction term and just set fx(i)(w(0)) = 0 for
all x(i).

3 Infinite Width NTK Derivation
In the example above, we computed the NTK for a finite width network. Naturally, as we did for the NNGP,
we can analyze the case when network depth k approaches infinity and under certain conditions on the initial
weights w(0), we can write a closed form for the NTK.

2

Theorem 1. Let A ∈ R1×k, B ∈ Rk×d and φ : R → R an element-wise activation function.1 For x ∈
Sd−1, let fx(w) : Rkd+k → R denote 1 hidden layer fully connected network with fx(w) = 1√

k
Aφ(Bx). If

A1i, Bij
i.i.d∼ N (0, 1), then as k →∞, the NTK is given by:

K(x, x̃) = φ̌(xT x̃) + φ̌′(xT x̃)xT x̃ ;

where φ̌ : [−1, 1]→ R is the dual activation for φ for x, x̃ ∈ Sd−1.

Proof. As in Example 1, we denote:

w =
[
A11 A12 . . . A1k B11 B21 . . . Bkd

]T
;

To compute the NTK, we need to compute ∇fx(w), which requires computing ∂fx(w)
∂A1i

and ∂fx(w)
∂Bij

for i ∈
[k], j ∈ [d]. We perform these calculations directly. Namely, we first write fx(w) as:

fx(w) =
1√
k

k∑
i=1

A1,iφ(Bi,:x)

Then, we have:

∂fx(w)

∂A1i
=

1√
k
φ(Bi,:x) ;

∂fx(w)

∂Bij
=

1√
k
A1iφ

′(Bi,:x)xj

Lastly, the kernel is given by:

K(x, x̃) = 〈fx(w(0)), fx̃(w(0))〉 =
1

k

k∑
i=1

φ(Bi,:x)φ(Bi,:x̃) +
1

k

k∑
i=1

d∑
j=1

A2
1iφ
′(Bi,:x)φ′(Bi,:x̃)xj x̃j

Now, it is evident that the terms in red and blue above can be evaluated using the law of large numbers
(indeed, this is one reason for choosing the scaling factor of 1√

k
). Moreover, we observe that the term in

red above is precisely the NNGP (see Definition 1 of Lecture 4). Additionally, we recall from Corollary 1
of Lecture 4, that if the data is restricted to the unit sphere, the NNGP of a network with activation φ is
given by the dual activation φ̌. Next, since A1i are independent of Bij and EA1i

[A2
1i] = 1, we conclude that

in probability:

lim
k→∞

1

k

k∑
i=1

d∑
j=1

A2
1iφ
′(Bi,:x)φ′(Bi,:x̃)xj x̃j = lim

k→∞

1

k

k∑
i=1

A2
1iφ
′(Bi,:x)φ′(Bi,:x̃)xT x̃

= xT x̃ lim
k→∞

1

k

k∑
i=1

φ′(Bi,:x)φ′(Bi,:x̃)

Lastly, we see that the term in blue above is the NNGP of a 1 hidden layer network with activation φ′. Thus,
provided the data is on the sphere this term is given by the dual of φ′, ˇ(φ′). From Corollary 2 of Lecture
4, we additionally observe that differentiation and the dual operator commute and so, this term is given by
(φ̌)′. Hence, we conclude:

K(x, x̃) = φ̌(xT x̃) + φ̌′(xT x̃)xT x̃

Remarks. Note that the derivation of a closed form for the NTK is simplified drastically by utilizing the
derivation of the NNGP. Namely, we observe that the NTK is a sum of two terms involving the NNGP for

1Formally, we require φ ∈ L2(µ), where µ is the Gaussian measure.

3

networks with activations φ and φ′. Notably, as we will show in the next lecture, this technique of using the
NNGP will be useful in writing a simple recurrence for the NTK of a deep neural network. When the data
are not normalized to be on the sphere, we can still write a closed form for the recursion, but it will contain
terms involving ‖x‖22 and ‖x̃‖22. A simple example for ReLU networks is presented in the homework.

NTK for Networks with Multidimensional Outputs. Above, we presented a derivation of the NTK for
neural networks implementing functions f : Rd → R. On the other hand, if we are interested in computing
the NTK for neural networks implementing functions f : Rd → Rc, remarkably, the kernel matrix remains
the same. Thus, even in the multidimensional case, we simply compute the NTK assuming the network has
1 output, and then solve kernel regression with the labels y ∈ Rc×n. This case is analyzed in detail in the
homework, and importantly, this property does not hold for neural networks with arbitrary layer structure,
e.g. fully convolutional networks.

We now provide an example to demonstrate that the NTK is easy to compute given the NNGP.

Example 2 (ReLU NTK from NNGP). Let φ(z) =
√

2 max(0, z) for z ∈ R be an element-wise activation.
If x, x̃ ∈ Sd−1 and ξ = xT x̃, then the NNGP is given by

Σ(x, x̃) = φ̌(ξ) =
1

π

(
ξ (π − arccos (ξ)) +

√
1− ξ2

)
Now by differentiating φ̌ with respect to ξ, we conclude:

φ̌′(ξ) =
1

π
(π − arccos(ξ))

Thus, the NTK is given by:

K(x, x̃) = φ̌(ξ) + ξφ̌′(ξ) =
1

π

(
ξ (π − arccos (ξ)) +

√
1− ξ2

)
+ ξ

1

π
(π − arccos(ξ))

4 Equivalence between NTK and Training Neural Networks
Thus far, we have demonstrated that the NTK arises as the kernel corresponding to training a linearization
of a neural network around initial weights. Remarkably, as layer-wise widths approach infinity, solving kernel
regression with the NTK is remarkably equivalent to training all layers of a neural network [4, 5].

A note to the reader: While a full proof of the equivalence between kernel regression with the
NTK and training infinitely wide neural networks is out of scope for this course, the goal of this
section is to provide intuition around why such an equivalence holds. For a rigorous proof of this
equivalence, we refer the reader to the works [4, 5].

The key idea behind the proof is that as layer-wise width approaches infinity, the Hessian of the neural
network approaches 0, while the gradient (and thus the NTK) remains constant. Hence, the neural network
is well approximated by a linear model. We outline at a high level the important steps in the proof of this
equivalence below.

1. As layer-wise width approaches infinity, the Hessian of the neural network with respect to its weights
approaches 0, while the NTK remains constant.

2. If the norm of the Hessian is uniformly small (i.e. O(ε)) in a ball of fixed radius, R, then the change
of the NTK in this ball is O(εR).

3. As layer-wise width approaches infinity, gradient descent used to train a neural network converges
linearly to a solution inside a ball of fixed radius R (see Theorem 4 of [5]).

4

To provide intuition for why the Hessian approaches 0 as width increases, we establish point (1) above for
the case of a 1 hidden layer network. We refer the reader to Proposition 2.3 of [4] for a proof of (2), and to
Theorem 4 of [5] for a proof of (3).

Proposition 1. Let A ∈ R1×k, B ∈ Rk, let φ : R → R denote a twice differentiable elementwise activation
function. Let fx(w) = 1√

k
Aφ(Bx) denote a 1 hidden layer fully connected neural network. Then assuming

A1i, Bij are bounded, for any x, x̃ ∈ [−m,m] for m ∈ R:

|K(x, x̃)| = O(1) ; ‖H(fx(w))‖2 = O

(
1√
k

)
Proof. The proof follows directly from the computation of the gradients ∇fx(w) and the Hessian H(fx(w)).
In particular, we have:

∂f

∂A1i
=

1√
k
φ(Bix) ;

∂f

∂Bi
=

1√
k
A1iφ

′(Bix)x ;

and similarly,

∂2f

∂A1i∂A1j
= 0 ;

∂2f

∂A1i∂Bi
=

1√
k
φ′(Bix)x ;

∂2f

∂B2
i

=
1√
k
A1iφ

′′(Bix)x2.

Hence, the NTK is given by:

K(x, x̃) =
1

k

k∑
i=1

φ(Bix)φ(Bix̃) + xx̃
1

k

k∑
i=1

A2
1iφ
′(Bix)φ′(Bix̃) = O(1)

On the other hand, the Hessian is sparse, and has the following form:

H(fx(w)) =



0 0 . . . 0 φ′(B1x)x 0 . . . 0

0 0 . . . 0 0 φ′(B2x)x . . . 0
...

... . . .
...

... . . .
...

0 0 . . . 0 0 0 . . . φ′(Bkx)x

φ′(B1x)x 0 . . . 0 A11φ
′′(B1x)x2 0 . . . 0

0 φ′(B2x)x . . . 0 0 A12φ
′′(B2x)x2 . . . 0

...
... . . .

...
...

... . . .
...

0 0 . . . φ′(Bkx)x 0 0 . . . A1kφ
′′(Bkx)x2


Via direct computation (See Appendix A), the spectral norm of H(fx(w)) is given by:

‖H(fw(x))‖2 =
1√
k

max
i∈[k]

∣∣∣∣∣A1iφ
′′(Bix)x2 +

√
A2

1iφ
′′(Bix)2x4 + 4φ′(Bix)2x2

2

∣∣∣∣∣ =
C√
k

= O

(
1√
k

)

Remarks. Note that in the above computation, the Hessian was sparse, and the spectral norm of the
Hessian was thus essentially controlled by the infinity norm over the gradient ∇fx(w). On the other hand,
the order of K is governed by the 2-norm of the gradient ∇fx(w). This discrepancy in norms leads to the
difference in scaling between the gradient and Hessian leading to the neural network being well approximated
by a linear model. Lastly, we note that neural networks with non-linear activation on the output layer will
not be well approximated by their linearization. This follows from the fact that the Hessian will contain an
additive term from the chain rule, which does not vanish with increasing width (See Section 4 of [4]).

5

M
SE

Network Width

Double Descent with the Neural Tangent KernelData Distribution and Training Samples

Width 1 Width 10

Width 128 Infinite Width

(c)(b)(a) Solutions Given by Varying Widths

Figure 1: A demonstration of the benefit of using over-parameterized neural networks and the NTK in
regression. (a) A visualization of the data distribution given by the function g(x) = x + sin(10x) ; the
training samples are shown in yellow. (b) Increasing network width leads to lower test loss, when using 1
hidden layer ReLU networks, and the model with lowest test loss corresponds to the NTK. (c) A visualization
of the functions learned by networks of varying width. We see that networks of width 1 and 10 are under-
parameterized and are unable to fit the data exactly, while the network of width 128 and the NTK interpolate
the data, yet generalize well to test data.

5 Empirical Demonstration
Just as we did for the NNGP, we compare the performance of finite width neural networks with that of
the NTK. Unlike the case for the NNGP, we now compare training all layers of a neural network with the
performance of the NTK. In particular, in the example below, we again demonstrate the double descent
curve, which indicates that larger (e.g. wider) neural networks have lower test error and that the NTK
(corresponding to an infinite width network) has the lowest test error.

Example 3. Let X ∈ R1×15 denote 15 samples of real numbers drawn from the uniform distribution on
the interval from [−1, 1] (denoted U [−1, 1]). Let g(x) : R → R such that g(x) = x + sin(10x) and let
y = f(X) ∈ R1×15 such that yi = g(Xi). Given these 15 samples, the goal is to recover g(x).

In particular, we consider the class of 1 hidden layer neural networks of width k given by:

fk(x) =

√
2√
k
Aφ(Bx) ;

where A ∈ R1×k, B ∈ Rk×d, and φ is the ReLU function (i.e. φ(z) = max(0, z)). We then use gradient
descent with a learning rate of 10−2 to minimize the MSE

L(A,B) =
1

2

n∑
i=1

(yi − fk(Xi))
2 ,

for varying widths k. For k ≥ 15, we simply train until the MSE is less than 2 · 10−3 (e.g. close to 0) and
for k < 15, we use a patience strategy [1] with a max patience of 50.2

In Fig. 1, we visualize the test error of the models fk on 1000 points sampled evenly from [−1, 1] for
k ∈ [10]∪ {15, 20, 32, 64, 128, 256, 512, 1024}. We observe that the test error again follows the double descent
model. In particular, the test loss decreases for models of width k > 15 and the test error initially decreases
and then increases for k < 15.

Lastly, we compare the performance of the finite width networks to that of the NTK corresponding to the case
where k goes to infinity. In particular, we observe that the NTK provides the lowest test error. Note that we
are not using the empirical NTK (given by computing inner products of the gradients of fk at each data point),

2When using a patience strategy, one keeps track of the number of times t that the loss did not decrease. If t is larger than
the max patience, training concludes.

6

and importantly, we are not correcting the labels via the predictions of the neural network at initialization.
This clarifies why the performance of the finite width network is not limiting to the performance of the NTK
used here.

Remarks. While the NTK achieved the lowest test error in the example above, this need not always be the
case (as is shown in [3] for the convolutional NTK). Nevertheless, a recurring theme of this course is that
the NTK serves as a simple, fast, and strong baseline for many machine learning tasks.

6 Discussion
Using the tools developed in prior lectures, we established the equivalence between training infinitely wide
neural networks and solving kernel regression with the NTK. We presented a closed form for the NTK of a
1 hidden layer fully connected network and showed that the NTK can be written as the sum of the NNGP
and a correction term. Hence, knowing the NNGP for a given activation easily allows for computation of
the NTK. As we did for the NNGP, we lastly showcased the double descent phenomenon by comparing the
generalization of the NTK and finite width fully connected networks.

While the NTK of a 1 hidden layer fully connected network is useful for establishing a simple nonlinear
baseline on vectorized data, we need to compute the NTK corresponding to deep networks or convolutional
networks to match the effectiveness of neural networks on general datasets (e.g. image datasets). In the
following lecture, we first show that the computations of the NTK for 1 layer are easily extended to give a
formula for a fully connected network with depth L. We then lastly will demonstrate how to compute the
NTK for a convolutional network (the CNTK).

References
[1] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning, volume 1. MIT Press, 2016.

[2] A. Jacot, F. Gabriel, and C. Hongler. Neural Tangent Kernel: Convergence and generalization in neural
networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems. Curran Associates, Inc., 2018.

[3] J. Lee, S. S. Schoenholz, J. Pennington, B. Adlam, L. Xiao, R. Novak, and J. Shol-Dickstein. Finite
Versus Infinite Neural Networks: an Empirical Study. In Advances in Neural Information Processing
Systems, 2020.

[4] C. Liu, L. Zhu, and M. Belkin. On the linearity of large non-linear models: when and why the tangent
kernel is constant. In Neural Information Processing Systems, 2020.

[5] C. Liu, L. Zhu, and M. Belkin. Toward a theory of optimization for over-parameterized systems of
non-linear equations: the lessons of deep learning. arXiv:2003.00307, 2020.

7

A Hessian Eigenvalue Computation
Below, we review the computation used to compute the eigenvalues of the Hessian of a 1 hidden layer neural
network. Recall that the Hessian is given as follows:

H(fx(w)) =



0 0 . . . 0 φ′(B1x)x 0 . . . 0

0 0 . . . 0 0 φ′(B2x)x . . . 0
...

... . . .
...

... . . .
...

0 0 . . . 0 0 0 . . . φ′(Bkx)x

φ′(B1x)x 0 . . . 0 A11φ
′′(B1x)x2 0 . . . 0

0 φ′(B2x)x . . . 0 0 A12φ
′′(B2x)x2 . . . 0

...
... . . .

...
...

... . . .
...

0 0 . . . φ′(Bkx)x 0 0 . . . A1kφ
′′(Bkx)x2


To compute the eigenvalues of this Hessian, we first note that the Hessian has sparse structure and in
particular, each row has at most 2 entries. Hence, we first check whether vectors that share a similar
sparsity pattern are eigenvectors. In particular, consider the vector:

v =



1

0
...
0

α

0
...
0


;

where v has two nonzero entries (1, α) in the first coordinate and the k+ 1 coordinate. Suppose that v is an

8

eigenvector with eigenvalue λ, then we must have:

H(fx(w))v =



0 0 . . . 0 φ′(B1x)x 0 . . . 0

0 0 . . . 0 0 φ′(B2x)x . . . 0
...

... . . .
...

... . . .
...

0 0 . . . 0 0 0 . . . φ′(Bkx)x

φ′(B1x)x 0 . . . 0 A11φ
′′(B1x)x2 0 . . . 0

0 φ′(B2x)x . . . 0 0 A12φ
′′(B2x)x2 . . . 0

...
... . . .

...
...

... . . .
...

0 0 . . . φ′(Bkx)x 0 0 . . . A1kφ
′′(Bkx)x2





1

0
...
0

α

0
...
0



=



αφ′(B1x)x

0
...
0

φ′(B1x)x+ αA11φ′′(B1x)x2

0
...
0


Hence, as H(fx(w))v = λv, we conclude:

αφ′(B1x)x = λ

φ′(B1x)x+ αA11φ
′′(B1x)x2 = λα

The above is a system of two equations with two unknowns (α, λ). We thus solve the above system of
equations for λ to conclude:

λ =
A11φ

′′(B1x)x2 ±
√
A2

11φ
′′(B1x)2x4 + 4φ′(B1x)2x2

2

By shifting the nonzero entries of v to positions i and k + i for i ∈ [k], we recover 2k eigenvalues. As the
Hessian is a matrix with 2k rows, we thus recover all eigenvalues and conclude that pairs of eigenvalues are
given by:

λi, λk+i =
A1iφ

′′(Bix)x2 ±
√
A2

1iφ
′′(Bix)2x4 + 4φ′(Bix)2x2

2

9

	Introduction
	Linearization of Neural Networks
	Infinite Width NTK Derivation
	Equivalence between NTK and Training Neural Networks
	Empirical Demonstration
	Discussion
	Hessian Eigenvalue Computation

