
Lecture 2: Linear Regression

Adityanarayanan Radhakrishnan

Edited by: Max Ruiz Luyten, George Stefanakis, Cathy Cai

September 25, 2024

1 Introduction
We will begin this course with a review of linear regression, i.e. finding a line of best fit to training data.
Although studied for hundreds of years, linear regression remarkably continues to serve as a simple model
that provides invaluable intuition into modern machine learning phenomena. For example, one can provably
establish the generalization benefits of over-parameterization given by the double descent curve in linear
models [1, 2, 3, 5]. Importantly, our analysis of linear regression will provide us tools for developing nonlinear
regression methods, namely kernel regression.

2 Preliminaries
Suppose we are given a data distribution (x, y) ∼ P(x,y) where x ∈ Rd is a feature vector and y ∈ R is
the corresponding label. Assume we are given n independent, identically distributed (i.i.d.) training pairs
{x(i), y(i)}ni=1 ⊂ Rd × R. Our goal is to learn a function f̂ in a class of functions F = {f : Rd → R} that is
able to “predict well” on unseen samples, i.e. f̂(x) ≈ y for x 6= x(i) for all i ∈ [n]. We give concrete examples
of problems in this setting below.

Example 1 (Housing Price Prediction). Real estate companies, such as Zillow, provide services that present
price estimates (Zestimates) for houses. Such software is easily framed in the context above where y is the
price of a house and the entries of x contain information relevant to predicting the price of a house, e.g.
number of bedrooms, number of bathrooms, location, etc.:

x =


bedrooms

bathrooms

squarefootage
...

 7→ y = house price

Our training data would be a set of feature vectors for houses that were sold, {x(i)}, along with the price for
which they were sold, {y(i)}. Our goal would then be to use this historical data to build a model that can
accurately estimate the price of a new house.

Example 2 (Image Classification). Another prominent example of such a prediction problem involves clas-
sifying what kind of object is in a given image (e.g. does the image contain a dog or cat?). In this case, the
entries of x are pixel values in an image and y is simply a label encoding the type of object in the image (e.g.
label 1 for dogs, label −1 for cats):

x =


pixel 1 value

pixel 2 value
...

 7→ y =

1 if a dog is in the image

−1 if a cat is in the image

1

Our training data in this case would be a labelled set of images (e.g. ImageNet [7] or CIFAR10 [6]), and our
goal would be to use these labelled images to build a model that could accurately predict whether an object is
in an image.

After framing the general problem above, the following need to be formalized:

1. How do we measure model performance, i.e. how do we assess f̂(x) ≈ y ?

2. What class of functions F do we want to use?

3. How do we select a function f̂ ∈ F?

These application dependent questions are of generalization and optimization and lie at the heart of machine
learning. In this lecture, we will select simple answers to these questions, leading to the linear regression
framework.

3 Linear Regression

To address question 1 above, we will utilize the squared Euclidean distance from f̂(x) and y, which is typically
referred to as mean squared error:

Definition 1 (MSE). Given y, ỹ ∈ Rp, the mean squared error (MSE) between y, ỹ is L(y, ỹ) = 1
2‖y − ỹ‖

2
2.

To address question 2, we will at the moment restrict ourselves to the simple class of linear functions, i.e.
F = {f : Rd → R ; f(x) = wx , w ∈ R1×d}.

Lastly, in order to address question 3, we follow an empirical risk minimization (ERM) framework and aim
to select w ∈ R1×d such that wx(i) ≈ y(i) for all i ∈ [n]. To provide some intuition around this choice, it
is reasonable to expect that the training data and test data come from the same distribution, and so, we
expect that there should be patterns in training data that can aid in building a model that generalizes to
test data. For a more formal treatment of the ERM framework see [8]. We can enforce this formally by
minimizing the MSE on the training data. In particular, in order to learn a function f̂(x) = ŵx from data,
we find ŵ by minimizing:

L(w) =
1

2

n∑
i=1

(y(i) − wx(i))2

After learning ŵ by minimizing the loss above, given a new sample x, our prediction is just given by ŵx.
We illustrate this procedure concretely on the real-world example of using linear regression for housing price
estimates below.

Example 3 (Housing Price Prediction via Linear Regression). Suppose we are given feature vectors con-
taining three features (# of bedrooms, # of bathrooms, square footage) for 100 sold houses, {x(i)}100i=1 ⊂ R3,
along with the prices they were sold at, {y(i)}100i=1 ⊂ R. We first minimize the following training loss in order
to construct a predictor, ŵ ∈ R1×3:

L(w) =
1

2

100∑
i=1

(y(i) − wx(i))2 =
1

2

100∑
i=1

(y(i) − w1x
(i)
1 − w2x

(i)
2 − w3x

(i)
3)2

Given the features for a new house, x, our prediction is then given by wx = w1x1 + w2x2 + w3x3.

Now that we have the linear regression framework set up, all that remains is to provide an algorithm to
minimize the MSE, L(w). In this case, we will make the simple choice of selecting gradient descent as our
optimization algorithm.

Definition 2 (Gradient Descent). Given a loss function L(w) : Rd → R, an initial value w(0) ∈ Rd, and
a learning rate (a.k.a step size) η ∈ R, gradient descent is used to minimize the loss L(w) by iteratively
computing

w(t+1) = w(t) − η∇wL(w(t))

2

for t ∈ Z+.

An important aspect of the linear regression setting, is that as t → ∞, we can explicitly identify both the
largest possible learning rate for which the recurrence above converges and the corresponding limit point.
This well-known result [4] is presented in the theorem below for the case when w(0) = 0, and the general
form appears in homework 2.

Theorem 1. Let {x(i), y(i)}ni=1 ⊂ Rd × R denote training samples and labels. Let X = [x(1)|x(2)| . . . |x(n)]
and y = [y(1), y(2), . . . y(n)]. Let σ1 be the top singular value of X. Given initialization w(0) = 0, gradient
descent used to minimize:

L(w) =
1

2

n∑
i=1

(y(i) − wx(i))2

converges to the global minimum w(∞) = yX†, where X† is the Moore-Penrose pseudoinverse of X, iff the
learning rate η satisfies 0 < η < 2

σ2
1
.

Proof. We first compute the terms in the gradient descent updates explicitly. Namely, we have:

w(t+1) = w(t) + η(y − wX)XT

Now, let S = XXT and S′ = yXT . Then, w(t+1) = w(t)(I−ηS)+ηS′. Next, we directly solve the recurrence
relation. Namely,

w(t) = ηS′
[
(I − ηS)t−1 + (I − ηS)t−2 + ...+ (I − ηS)1 + I

]
Let X = UΣV T denote the singular value decomposition of X where {σ1, . . . , σr} are the non-zero singular
values of Σ and r is the rank of X. Then, S = UΣ2UT , and S′ = yV ΣUT . Thus, we can simplify the
recurrence relation:

w(t) = ηS′U
[
(I − ηΣ2)t−1 + (I − ηΣ2)t−2 + ...+ (I − ηΣ2)1 + I

]
UT

As the diagonal entries of (I−ηΣ2)t−1 +(I−ηΣ2)t−2 + ...+(I−ηΣ2)1 + I form geometric series, for η < 2
σ2
1
,

we have:

w(t) = ηS′UΣ+UT

Σ+ =


1−(1−ησ2

1)
t

ησ2
1

0 . . . 0

0
1−(1−ησ2

2)
t

ησ2
2

. . . 0 0r×d−r

0 . . .
1−(1−ησ2

r)
t

ησ2
r

0d−r×r tId−r×d−r


Now substituting in S′ = yV ΣUT gives us:

w(t) = yV Σ†UT

Σ† =


1−(1−ησ2

1)
t

σ1
0 . . . 0

0
1−(1−ησ2

2)
t

σ2
. . . 0 0r×d−r

0 . . .
1−(1−ησ2

r)
t

σr

0d−r×r 0d−r×d−r



3

Lastly, we can take the limit as t→∞ to conclude:

w(∞) = lim
t→∞

w(t) = yV Σ†UT where Σ† =


1
σ1

0 . . . 0

0 1
σ2

. . . 0 0r×d−r

0 . . . 1
σr

0d−r×r 0d−r×d−r


We lastly check that X† = V Σ†UT satisfies the following 4 properties of a Moore-Penrose inverse for a real
matrix X:

(1) XX†X = X

(2) X†XX† = X†

(3) (XX†)T = XX†

(4) (X†X)T = X†X

We note the following important point regarding the analysis in Theorem 1. When w(0) = 0, note that
w(t) for any t ∈ Z+ is given as a linear combination of training examples. In particular, from the proof of
Theorem 1, we have for {α(i)

t }ni=1 ⊂ R and all t ∈ Z+:

w(t) =

n∑
i=1

α
(i)
t x(i)

T

This result implies that the output of the trained predictor is always a linear combination of training examples
and thus lies in the span of the training data. This will be an extremely useful property for solving kernel
regression, where it will appear as the Representer theorem.

Now that we have a closed form for the solution to linear regression, we can understand our solution in the
context of sufficiently parameterized (n = d), under-parameterized (n > d), and over-parameterized (n < d)
regimes.

Sufficiently Parameterized Regime (n = d)

In the case when n = d (and assuming the rank of X is d), we know that there is exactly one solution to
linear regression from linear algebra. In particular, we can achieve zero training loss by solving the following
system of equations:

wX = y =⇒ w = yX−1

Naturally, when X is invertible, X† = X−1 and so gradient descent gives the expected solution.

Under-parameterized Regime (n > d)

In the case when n > d (and assuming the rank of X is d), we know that there is no interpolating solution (no
solution with zero training loss) to linear regression from linear algebra. Instead, a solution that minimizes
the MSE is found by setting the gradient of the MSE equal to zero:

∇wL(w) = 0 =⇒ (y − wX)XT = 0 =⇒ w = yXT (XXT)−1

Here, XXT is invertible since n > d and the rank of X is d. However, by substituting X = UΣV T given by
SVD, we see that yXT (XXT)−1 = yX†.

4

Square Footage (in hundreds)

Pr
ic

e
(in

 m
illi

on
s)

Training Data

(a)

Square Footage (in hundreds)

Pr
ic

e
(in

 m
illi

on
s)

Linear Fit to Data

(b)

Figure 1: A visualization of the solution learned when using linear regression to fit training data. We consider
the example of predicting price of a house (in millions of dollars) given only the square footage (in hundreds
of sq.ft.). (a) A visualization of the data that we want to fit. (b) A visualization in blue of the line of best
fit given by minimizing the mean squared error to the training data. The residuals from the data to the line
of best fit are shown as dashed black lines.

Over-parameterized Regime (n < d)

In the case when n < d, we know that there are infinitely many interpolating solutions to linear regression
from linear algebra. We showed that the solution selected by gradient descent from zero initialization is the
Moore-Penrose solution. This solution is the minimum `2 norm solution, as will be proved in homework 2.

4 An Empirical Demonstration
We now present a simple of example of performing linear regression to find a line of best fit to data. In order
to easily visualize the solution given by linear regression, we will consider a simple setting in which we have
only 1 feature, i.e. x ∈ R.

Example 4 (Housing Price Prediction from Square Footage). Suppose we are given the square footage of 10
houses/apartments in New York City, along with their corresponding price, as shown in Figure 1a. In Figure
1b, we visualize the linear regression solution given by Theorem 1. We see that the line of best fit minimizes
the MSE to the training data, and the corresponding residuals to the data points are shown as black dashed
lines. Note that since we are given more samples (10) than the dimension (1) and since the samples are not
collinear, we are in the under-parameterized regime and cannot achieve zero training MSE.

5 Discussion
Thus far, we have presented the linear regression framework and analyzed the closed form of the solution to
linear regression given by gradient descent. While effective as a simple baseline in many applications, most
machine learning problems require learning a non-linear mapping from features to labels.

Fortunately, there is a simple method for extending the linear regression framework to perform nonlinear
regression. Namely, instead of using the features x ∈ Rd directly, we can map the features x to a higher
dimensional space by combining entries of x. For example, we can map x ∈ Rd to x̃ ∈ Rd+1 by concatenating
the feature x1x2 to x. Then, we can simply perform linear regression on the transformed features x̃ ∈ Rd+1

instead of on the original features x.

However, hand-crafting features is often an involved procedure, and it is unclear what combinations or

5

functions of features we should use. Instead of hand-crafting finitely many such features, we will turn to
mapping the features x into an infinite dimensional space (in particular, a Hilbert space) and then efficiently
performing linear regression in this space.

References
[1] P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler. Benign overfitting in linear regression. Proceedings

of the National Academy of Sciences, 117(48):30063–30070, 2020.

[2] M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-learning practice and the classical
bias–variance trade-off. Proceedings of the National Academy of Sciences, 116(32):15849–15854, 2019.

[3] M. Belkin, D. Hsu, and J. Xu. Two models of double descent for weak features. Society for Industrial
and Applied Mathematics Journal on Mathematics of Data Science, 2(4):1167–1180, 2020.

[4] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems, volume 375. Springer
Science & Business Media, 1996.

[5] T. Hastie, A. Montanari, S. Rosset, and R. J. Tibshirani. Surprises in high-dimensional ridgeless least
squares interpolation. arXiv:1903.08560, 2019.

[6] A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of
Toronto, 2009.

[7] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and F.-F. Li. ImageNet large scale visual recognition challenge. International
Journal of Computer Vision, 2015.

[8] V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

6

	Introduction
	Preliminaries
	Linear Regression
	An Empirical Demonstration
	Discussion

