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1 Introduction
Thus far, we have developed the linear regression framework, which identifies a line of best fit to map from
samples to labels. However, in modern datasets, e.g. image classification, it is rarely the case that there exists
an effective linear mapping from samples to labels. Hence, we now extend from linear regression to kernel
regression to learn a nonlinear mapping from samples to labels. We conclude this lecture by presenting a
connection between solving kernel regression and training the last layer of an infinitely wide neural network.
Such a connection will lead naturally into the development of Neural Network Gaussian Processes (NNGP)
and the Neural Tangent Kernel.

2 From Linear to Kernel Regression
Consider the empirical risk minimization framework from the previous lecture, which was used to learn a
mapping from training samples {x(i)}ni=1 ⊂ Rd to labels {y(i)}ni=1 ⊂ R. Recall that given a parameterized
function class (e.g. the set of linear functions from Rd to R), we selected f̂(x) = ŵx where ŵ by minimizing:

L(w) = 1

2

n∑
i=1

(y(i) − wx(i))2

In order to extend linear regression into nonlinear regression, we will simply apply a fixed nonlinear transform
to samples x before performing linear regression. Formally, we will consider the set of class of functions

F = {f : Rd → R ; f(x) = 〈w,ψ(x)〉H , ψ : Rd → H , w ∈ H} ;

where H is a Hilbert space with inner product 〈·, ·〉H and ψ is a nonlinear feature map.1 The following
example in which H = R3 provides intuition as to why such an approach can be effective.

Example 1. Consider data drawn from the 2D distribution shown in Fig. 1a, where each sample lies on
one of two concentric circles corresponding to different classes. Note that in 2 dimensions, the data is not
linearly separable, i.e. there is no line we can draw that separates the orange from the blue points. On the
other hand, as the radius of each circle is a key feature for classifying the points, consider the following
feature map ψ : R2 → R3 given by

ψ

([
x1

x2

])
=

 x1

x2√
x21 + x22

 .
Note that the added feature corresponds to the radius of the circle on which a point lies. In Fig. 1b, we
visualize the data after applying the map ψ to each of our data points. While the data were not linearly
separable in 2 dimensions, they are now linearly separable in three, i.e. we can draw a plane that separates
the orange and blue points.

1Recall that a Hilbert space is a complete inner product space.
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Figure 1: A simple demonstration of the effectiveness of using a linear predictor on a nonlinear transformation
of features. (a) A dataset in where the two classes (corresponding to orange and blue points) are not linearly
separable, i.e. there is no line separating the two classes. (b) Adding the feature

√
x21 + x22 to the data makes

the transformed features linearly separable in 3 dimensions.

As demonstrated in the example, by selecting an appropriate feature transformation, we can still construct
an effective predictor even while using a linear function class. Thus, a natural question is how to select an
appropriate feature transformation for any given dataset. As we will demonstrate in the following lecture,
when there is no prior knowledge about useful features, it is often beneficial to consider random feature
maps into a Hilbert space. Nevertheless, we will return to answering this fundamental question after first
developing the fundamentals for finding a solution to linear regression after applying a general feature map,
ψ : Rd → H. Note that even though H can be infinite dimensional, we can remarkably still solve linear
regression in such a space by utilizing the following Representer theorem [3].

2.1 Representer Theorem
Consider performing linear regression to map from samples transformed by a feature map ψ, e.g. {ψ(x(i))}ni=1 ⊂
H to labels {y(i)}ni=1 ⊂ R. Suppose H is a finite dimensional Hilbert space with the usual `2 inner product,
then we can follow the analysis from the previous lecture to solve for the minimum norm solution. In par-
ticular, recall from Theorem 1 of Lecture 2 that using gradient descent initialized at w(0) = 0 to minimize
the loss

L(w) = 1

2

n∑
i=1

(y(i) − wx(i))2 ;

led to w∗ = yX†, which was the minimum norm solution. We now present a key property of this minimum
norm solution.

Proposition 1. Let {x(i)}ni=1 ⊂ Rd and {y(i)}ni=1 ⊂ R. Then there exist {αi}ni=1 ⊂ R, such that the
minimum `2 norm minimizer, w∗, for the loss:

L(w) = 1

2

n∑
i=1

(y(i) − wx(i))2 ;

has the form

w∗ =

n∑
i=1

αix
(i)T ;
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Proof. The fact that w∗ = yX† is the minimum `2 norm solution is shown in the homework. Naturally, we
can conclude the result by noting that the span of yX† is equal to the span of X. However, here we will also
show that gradient descent actually preserves this property. We use induction to show that for any t ∈ N,
the solution given by gradient descent at timestep t has the form:

w(t) =

n∑
i=1

α
(t)
i x(i)

T

The statement clearly holds for w(0) (e.g. αi = 0 for all i). Thus, assume it is true for time t. Then for t+1,
we have:

w(t+1) = w(t) + η(y − w(t)X)XT

= w(t) + η

n∑
i=1

β
(t)
i x(i)

T
(β(t)

i is the ith coordinate of y − w(t)X ∈ R1×n)

=

n∑
i=1

(α
(t)
i + ηβ

(t)
i )x(i)

T

=

n∑
i=1

α
(t+1)
i x(i)

T

Hence, w(t+1) has the desired form and induction is complete.

Now if H is finite dimensional, we can repeat this previous analysis by substituting X with the transformed
sample matrix ψ(X) = [ψ(x(1))| . . . |ψ(xn)]. A key aspect of the previous analysis is that it is extendable to
the case where H is a general Hilbert space. In particular, Proposition 1 is generalized as follows.

Theorem 1 (Representer Theorem). Let H be a Hilbert space with inner product 〈·, ·〉H. Let {ψ(x(i))}ni=1 ⊂
H and {y(i)}ni=1 ⊂ R. Then there exist {αi}ni=1 ⊂ R, such that the minimum H-norm minimizer, w∗, for
the loss:

L(w) = 1

2

n∑
i=1

(y(i) − 〈w,ψ(x(i))〉H)2 ; (1)

lies in the span of the samples {ψ(x(i))}ni=1, i.e.

w∗ =

n∑
i=1

αiψ(x
(i)) ;

Proof. We prove the result by first showing that all minimizers of the loss differ only by a term that is
orthogonal to the transformed training samples, and then, we will use the Pythagorean theorem to show
that the solution in the span of the transformed training samples has minimum norm. In particular, consider
the orthogonal decomposition of any w̃ ∈ H onto the space spanned by ψ(x(i)) and its complement. In
particular, there exists some orthonormal basis {φi}ni=1 ⊂ H for {ψ(x(i))}ni=1 and some v ∈ H orthogonal to
all φi such that:

w̃ =

n∑
i=1

βiφi + v
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We thus have that:

L(w̃) = 1

2

n∑
i=1

(y(i) − 〈w̃, ψ(x(i))〉H)2

=
1

2

n∑
i=1

(y(i) − 〈
n∑

i=1

βiφi + v, ψ(x(i))〉H)2

=
1

2

n∑
i=1

(y(i) − 〈
n∑

i=1

βiφi, ψ(x
(i))〉H)2

= L(w∗)

Hence, the loss is unaffected by adding a term orthogonal to the span of the ψ(x(i)). Moreover, by the
Pythagorean theorem:

‖w̃‖2H = ‖
n∑

i=1

βiφi + v‖2H = ‖
n∑

i=1

βiφi‖2H + ‖v‖2H ≥ ‖w∗‖2H

Hence, the minimum H-norm minimizer of the loss admits the desired representation.

For any feature map ψ : Rd → H, we can thus solve linear regression in a Hilbert space by first solving for
the coefficients αi and utilizing the representation for the minimum norm solution given in Theorem 1. This
procedure is referred to as kernel regression.

2.2 Kernel Regression and the Kernel Trick
We will now use the result of Theorem 1 to convert the seemingly intractable problem of minimizing the
loss in Eq. (1) to solving a finite dimensional linear regression problem. In particular, we substitute w =∑n

i=1 αiψ(x
(i)) to simplify the loss in Eq. (1) as follows:

L(w) = 1

2

n∑
i=1

(y(i) − 〈w,ψ(x(i))〉H)2

=
1

2

n∑
i=1

(y(i) − 〈
n∑

j=1

αjψ(x
(j)), ψ(x(i))〉H)2

=
1

2

n∑
i=1

y(i) −
[
α1 α2 . . . αn

]

〈ψ(x(1)), ψ(x(i))〉H
〈ψ(x(2)), ψ(x(i))〉H

...
〈ψ(x(n)), ψ(x(i))〉H




2

(2)

Therefore, instead of minimizing L(w) over all w, we minimize the loss L with respect to the parame-
ters {αi}ni=1. Theorem 1 implies that identifying these αi’s will yield the minimum H-norm solution that
minimizes the loss in Eq. (1).

Importantly, Eq. (2) implies that we need only know the inner products 〈ψ(x(i)), ψ(x(j))〉H for all i, j ∈ [n] to
perform linear regression in a Hilbert space. Moreover, we do not even need to know the map ψ, but rather
the functional that yields the required inner products. Namely, we only need some function K : Rd×Rd → R
such that K(x, x̃) = 〈ψ(x), ψ(x̃)〉H. This is formalized by the notion of kernels.

Definition 1 (Kernel). Given nonempty set X , a kernel is a symmetric continuous function K : X×X → R.

Note that requiring K to have this inner product form introduces constraints, e.g. K(x, x) ≥ 0. Thus, we
will consider kernels that satisfy the positive semi-definite constraint as defined below.
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Definition 2 (Positive semi-definite kernel). Given nonempty set X , a kernel function K : X × X → R is
positive semi-definite iff for any {x(i)}ni=1 ⊂ X and for any {ci}ni=1 ⊂ R,

n∑
i=1

n∑
j=1

cicjK(x(i), x(j)) ≥ 0.

Although out of scope for this course, we note that there are easier conditions for verifying if a given function
is a kernel, e.g. Bochner’s theorem [9]. The following proposition (proved in the homework) implies that
those kernels induced by a feature map are naturally positive semi-definite kernels.

Proposition 2. Let H be a Hilbert space with inner product 〈·, ·〉H. Let K : Rd × Rd → R such that
K(x, x̃) = 〈ψ(x), ψ(x̃)〉H for ψ : Rd → H. Then K is a positive semi-definite kernel.

We here provide some classical examples of positive semi-definite kernels.

1. Linear Kernel. K(x, x̃) = xT x̃.

2. Gaussian (RBF) Kernel. K(x, x̃) = exp
(
−L‖x− x̃‖22

)
for L ∈ R+.

3. Laplace Kernel. K(x, x̃) = exp (−L‖x− x̃‖2) for L ∈ R+.

Each of these kernels corresponds to a different feature map, ψ, and in fact, a different Hilbert space, H.
Thus, selection of a kernel function will naturally impact the performance of the solution obtained by kernel
regression. A key goal of this course is to provide a simple method for selecting effective kernel functions
by establishing a connection with neural networks that are known to perform well on a given domain (e.g.
convolutional networks on images). We will provide a simple example of this connection at the end of this
lecture. For now, we introduce the kernel regression framework by simplifying Eq. (2) given the kernel
function notation.

Theorem 2 (Kernel Regression). Let H be a Hilbert space with inner product 〈·, ·〉H. Let ψ : Rd → H
and let K : Rd × Rd → R be a kernel function such that K(x, x̃) = 〈ψ(x), ψ(x̃)〉H. The minimum H-norm
minimizer of the loss:

L(w) = 1

2

n∑
i=1

(y(i) − 〈w,ψ(x(i))〉H)2

is given by w∗ =
∑n

i=1[yK̂
†]iψ(x

(i)) where K̂ ∈ Rn×n is the positive semi-definite matrix with entries
K̂i,j = K(x(i), x(j)). Moreover, the corresponding predictor, f̂ : Rd → R, is given by

f̂(x) = yK̂†K̂(X,x) ;

where K̂(X,x) ∈ Rn with entries K̂(X,x)i = K(x(i), x).

Proof. Following the result of Theorem 1, we need only show that the vector α = [α1, α2, . . . , αn] ∈ R1×n

equals yK̂†. In particular, writing Eq. 2 in matrix form, we find:

L(α) = ‖y − αK̂‖2

Now minimizing L(α) is equivalent to solving the linear system y = αK̂, which consists of n equations with
n variables.2 In particular the solution is given by α = yK̂† as was proved in Lecture 2 Theorem 1. Hence
we conclude by Theorem 1:

w∗ =

n∑
i=1

[yK̂†]iψ(x
(i)) ;

2The matrix K̂ is often referred to as the Gram matrix.
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Lastly, recall that our predictor is given by:

f̂(x) = 〈w∗, ψ(x)〉H =

〈
n∑

i=1

[yK̂†]iψ(x
(i)), ψ(x)

〉
H

= yK̂†K̂(X,x)

Implementation Remarks. Note that unlike linear regression, Theorem 2 implies kernel regression involves
solving linear regression with a square matrix. In particular, this makes kernel regression amenable to fast
linear solvers, e.g. using the numpy “solve” function [10]. While traditionally solving a linear system with
greater than 50, 000 variables can be time consuming, recent works [4, 5, 6] allow for solving kernel regression
with millions and even billions of variables. Importantly, as will be demonstrated in the homework, these
methods are far faster than the popular support vector machine (SVM) solvers provided by scikit-learn [8].
Given the importance of such solvers, we provide extensive homework exercises involving running kernel
regression with these libraries.

Benefits of Kernel Regression. Note that unlike the complicated loss landscapes of neural networks,
finding the minimum norm solution with kernel regression involves solving a convex optimization problem.
Hence, optimization becomes conceptually simpler in this setting. Moreover, unlike neural networks, kernel
regression offers interpretability of learned solutions in the sense that every prediction on a new sample is
just a weighted linear combination of labels for training examples. Hence, akin to the nearest neighbors
algorithm, we can understand which training examples were most influential in the prediction for a new
sample.

Given the formal development of kernel regression thus far, we now present some concrete examples to make
clear how to use the framework in practice.

3 An Empirical Demonstration
We return to the running example of predicting housing prices from square footage from Lecture 2. In
particular, we will focus on performing kernel regression using the Gaussian and Laplace kernels. We will
importantly understand how altering the kernel bandwidth parameter, i.e. the constant L in the kernel
definition, affects the solution given by kernel regression.

Example 2. Suppose we are again given the square footage of 10 houses/apartments in New York City,
along with their corresponding price, as shown in Figure 2a. Let X = [x(1), x(2), . . . , x(10)] denote the 10
training samples and let y = [y(1), y(2), . . . , y(10)] denote the 10 training labels. We now use kernel regression
with kernel K being the Laplace or Gaussian kernel to find a nonlinear fit to the data. We outline the steps
for kernel regression below.

Step 1: Compute the kernel (Gram) matrix K̂ ∈ R10×10 where K̂i,j = K(x(i), x(j)).

Step 2: Solve for the coefficient vector α by solving the linear system of equations y = αK̂.

Step 3: For any new sample x, compute the prediction given by f̂(x) = αK̂(X,x) where K̂(X,x)i =
K(x(i), x).

In Figure 2, we visualize the kernel regression solution given by Theorem 2 upon varying the choice of kernel
(between Gaussian and Laplace) and varying the kernel bandwidth parameter L. Note that since we are
solving kernel regression exactly and since the Gram matrix K̂ is invertible, all of our predictors interpolate
(achieve zero training error) on the data.

Implementation Suggestions. Note that for small L, e.g. L = 0.5, the Laplace kernel provides a
reasonable fit to the data. In particular, in the convex hull of the training samples, the predictor achieves
low MSE. In practice (and as showcased in the homework), the Laplace kernel is effective and simple to use
since the parameter L can be consistently chosen to be a small number, e.g. L ∈ {0.05, 0.1, 0.5}. We thus
recommend the Laplace kernel as a first kernel to try when establishing a quick, simple baseline with kernel
regression.
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Figure 2: A visualization of solutions given by kernel regression with the Gaussian (K(x, x̃) = exp(−L‖x−
x̃‖22)) and Laplace kernel (K(x, x̃) = exp(−L‖x − x̃‖2)) for the problem of predicting housing price from
square footage. (a) The training data consisting of 10 samples and labels. (b) The solutions given by varying
the parameter L in kernel regression with the Gaussian and Laplace kernel. We note that increasing the
parameter L leads to a kernel that interpolates the data by spiking at the training samples and outputting
near 0 predictions everywhere else. On the other hand, selecting small L (L = 0.5) for the Laplace kernel
leads to a reasonable interpolating solution with low test MSE.

4 Kernel Regression and Wide Neural Networks
We conclude this lecture with a brief introduction to the connection between training wide neural networks
and solving kernel regression. We note that while such connections have been around since the late 1900s
[7], recent advancements (in particular, the neural tangent kernel [2]) have renewed interest in this area.
Indeed, the remainder of this course will focus on covering key aspects of these recent advances.

For now, we turn to a simplified setting in which we connect nonlinear neural networks where only the last
layer is trained to solving kernel regression. In particular, consider the following connection between training
the last layer of a 1-hidden layer neural network and solving kernel regression.

Example 3. For x ∈ Rd, let f : Rd → R be a 1-hidden layer neural network with elementwise activation
φ : R→ R and parameters a ∈ R1×k, b ∈ Rk×d such that

f(x) = aφ(bx) =
1√
k

n∑
i=1

aiφ(bix) (3)

Given training samples {x(i)}ni=1 and corresponding labels {y(i)}ni=1, let a∗ denote the solution given by using
gradient descent with initialization a(0) = 0 to minimize the loss:

L(a) =
n∑

i=1

(y(i) − f(x(i)))2 ;

where the the parameters b are fixed and selected according to bi,j
i.i.d∼ N (0, 1). The corresponding predictor

f̂(x) = a∗φ(bx) is equivalent to that given by solving kernel regression (e.g. minimizing the loss in Eq. (1))
with the kernel K(x, x̃) = 〈φ(bx), φ(bx̃)〉`2 .

While this equality holds in the setting where k is finite since φ(bx) is a fixed feature map, it is remarkably
extendable to the setting where the number of hidden units k approaches infinity, and the corresponding
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kernel K has a tractable closed form for many nonlinearities φ. For example, if φ is the popular ReLU
activation [1], i.e. φ(x) = max(0, x), and ‖x‖2 = 1, ‖x̃‖2 = 1, then as k → ∞, the corresponding kernel is
given by:

K(x, x̃) =
1

π

(
π(xT x̃− arccos(xT x̃)) +

√
1− (xT x̃)2

)

In the next lecture, we will introduce such calculations more formally. This will lead to the development of
kernels arising as a result of training the last layer of any neural network, i.e. the neural network Gaussian
process kernels.
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