
Lecture 4: Neural Networks

Adityanarayanan Radhakrishnan

September 25, 2024

1 Introduction
Thus far, we have studied nonlinear models through the kernel regression framework, which involved trans-
forming the features in a nonlinear way and then performing linear regression. An alternative strategy to
building nonlinear models is to keep the features unchanged and instead, make the model nonlinear in pa-
rameters. In this lecture, we will introduce neural networks, which serve as one example of such a nonlinear
model that has achieved impressive empirical results over the previous decade. While there is a vast literature
on neural networks, we will focus on the following fundamentals:

1. Network architectures - fully connected networks, width, depth, and activation functions.

2. Training procedures - gradient descent, minibatch gradient descent.

3. Initialization schemes - zero initialization, standard initializations.

In addition, we will provide a list of guidelines for training neural networks to help avoid some common
coding errors. We refer the reader to [2] for a broad, high-level overview of these models.

2 Fully Connected Neural Networks (FCNNs)
We will begin by defining fully connected neural networks (FCNNs).1

Definition 1 (FCNN). A fully connected neural network (FCNN), f : Rd → R, of depth L has the
form:

f(x) =W (L)φ(W (L−1)φ(. . .W (2)φ(W (1)x) . . .);

where φ : R → R is an elementwise nonlinearity, W (i) ∈ Rki×ki−1 are weight matrices of width ki with
kL = 1 and k0 = d.

When we want to make dependence on the weight matrices {W (i)}ni=1 explicit, we denote the network by
fw where w ∈ R

∑L
i=1 kiki−1 is a vector of all parameters in the weight matrices {W (i)}ni=1.

Commonly used nomenclature. The intermediate outputs in a neural network (e.g. φ(W1x), φ(W2φ(W1x)),
etc.) are typically referred to as hidden layer representations. Pre-activation representations refer to those
hidden layer representations without a nonlinearity applied (e.g. W1x) and post-activation representations
refer to those with nonlinearity applied (e.g. φ(W1x)). In this course, depth refers to the number of weight
matrices. In the literature, it is common to also equate depth with the number of hidden layer representations
(e.g. a depth 2 network in our course may be referred to as a 1-hidden layer network).

Example 1 (Depth 2, Width k ReLU FCNN). The rectified linear unit (ReLU) activation is defined by
φ(z) = max(z, 0) for z ∈ R. A depth 2, width k ReLU FCNN is given by

f(x) = Aφ(Bx) =

k∑
i=1

Aiφ(Bi,:x);

1We note that the reader may also see the term multi-layer perceptron (MLP) used to refer to such networks.

1



where A ∈ R1×k and B ∈ Rk×d.

Standardly used activation functions. While activation function selection is an area of active research,
we recommend using the ReLU activation above or the Leaky ReLU variant given by

φ(z) =

z if z ≥ 0

cz if z < 0
;

where the constant c > 0 is typically chosen as c = 0.01. Practitioners sometimes grid search over activation
function to see which one gives the best performance, and some other activation function choices can be
found in [6].

3 Training Neural Networks with Gradient Descent
Now that we have defined a basic neural network architecture, we will train such networks on a dataset
(X, y) ⊂ Rd×n × R1×n using gradient descent. Recall, that the matrix X consists of n training samples
{x(p)}np=1 and the vector y consists of n training labels {y(p)}np=1. Let fw denote an L hidden layer neural
network with activation φ. To train fw on the dataset (X, y), we first set up a loss function. In particular,
we will use the following mean squared error for our loss function:

L(w) =
1

2

n∑
p=1

(y(p) − fw(x(p)))2.

Given an initial set of weights w(0) and a learning rate η, we can use gradient descent to update the weights
as follows:

w(t+1) = w(t) − η∇wL(w(t)) = w(t) + η

n∑
p=1

(y(p) − fw(t)(x(p)))∇fw(t)(x(p)) . (1)

Training a neural network in this manner is also known as back-propagation. We provide an example below
to make this computation explicit.

Example 2 (Gradient descent for Depth 2, Width k ReLU FCNN). Let f(x) = Aφ(Bx) denote a ReLU
FCNN of depth 2 and width k. We will next write the update rules explicitly by grouping the vector w into two
components: one corresponding to the weights in A and the other corresponding to weights in B. We will first
compute the gradients of fw with respect to the weights Ai and then with respect weights Bij. Suppressing
the dependence on w, recall that

f(x) =

k∑
i=1

Aiφ(Bi,:x).

Thus, the partial derivative with respect to the weights is given by

∂f

∂Ai
= φ(Bi,:x) ;

∂f

∂Bij
= Aiφ

′(Bi,:x)xj .

Using these expressions and substituting back into Eq. (1), we find that:

A
(t+1)
i = A

(t)
i + η

n∑
p=1

(
y(p) − fw(t)(x(p))

)
φ(B

(t)
i,: x) ;

B
(t+1)
ij = B

(t)
ij + η

n∑
p=1

(
y(p) − fw(t)(x(p))

)
A

(t)
i φ′(B

(t)
i,: x

(p))x
(p)
j .

2



We can write these terms concisely through vectorization as follows:

A(t+1) = A(t) + η

n∑
p=1

(
y(p) − fw(t)(x(p))

)
φ(B(t)x)T ;

B(t+1) = B(t) + η

n∑
p=1

(
A(t)T � φ′(B(t)x(p))

)(
y(p) − fw(t)(x(p))

)
x(p)

T
.

Mini-batch Gradient Descent. In the formulation of gradient descent above, we update the weights
based on the gradient of the loss over all training samples. In general, computing the gradient over all
samples can lead to memory issues especially when using the GPU. To overcome this limitation, we can
instead evaluate the loss for a handful of samples and update the weights based on this subset of gradients.
This procedure is referred to as mini-batch gradient descent. Importantly, in addition to overcoming memory
issues, mini-batch gradient descent can speed up training [1, 4].

Definition 2 (Mini-batch Gradient Descent). Given a loss function L(w, x, y) for a sample (x, y), an initial-
ization w(0) and data {(x(i), y(i)}ni=1, mini-batch gradient descent with step size η > 0 proceeds according
to the following steps:

Step 1: Sample m points {(x(j), y(j)}mj=1.

Step 2: w(t+1) = w(t) − η
m∑
j=1

∇wL(w(t), x(j), y(j)) .

Remarks. When m = 1 in the definition above, mini-batch gradient descent is referred to as stochastic
gradient descent. Note that we have been intentionally general about the sampling procedure in step 1
above. In particular, several sampling procedures exist, and we describe some standard ones below:

1. Round robin sampling. We partition the n points into groups of m with every example appearing in
exactly one group.2 We then iterate over all groups exactly once. A full iteration over this group is
referred to as an epoch.

2. Uniform random sampling. We uniformly sample m points from the total n samples.

3. Balanced sampling. When there is an imbalance in the data (e.g. in classification, when one class
has more examples than the other), it is often useful to use a sampling strategy which increases the
likelihood of sampling from the minority class. This ensures that the model will not simply predict the
majority class label for all samples.

Other optimization methods. In addition to gradient descent and mini-batch gradient descent described
above, there are roughly thirteen different optimization methods (referred to as optimizers) available in
PyTorch. Several of these optimizers are variants of gradient descent that incorporate additional techniques
such as pre-conditioners or momentum to speed up training. How should one go about choosing an effective
optimization method for neural networks? Unfortunately, the typical approach is to just grid search over
many different optimization methods and select the one that gives best performance. Below, I provide some
simple recommendations for optimizer selection based on my own experience training neural networks.

My optimizer recommendations.
In my experience, if I want to train a neural network quickly without necessarily squeezing out the
best possible performance, I choose to use the Adam optimizer with learning rate of 10−4. While
occasionally slower to train, I have empirically found mini-batch gradient descent (with learning
rates of 0.01 or 0.1) to give slightly improved results over the Adam optimizer on select tasks (e.g.
classifying images from the CIFAR-10 dataset [3]).

2When n is not divisible by m, we have one group with fewer than m samples.

3



Initialization Schemes. We now briefly discuss some standardly used initialization schemes and in the
subsequent lectures, we will rationalize these schemes. First, unlike linear and kernel regression, we note that
we cannot initialize all parameters of a neural network to start at 0. If we use a zero initialization scheme
for more than 1 layer, then training will never update the weights. We examine this case below for the 2
layer ReLU FCNN below.

Lemma 1 (Zero initialization for 2 layer ReLU FCNN). Let f(x) = Aφ(Bx) denote a 2 layer ReLU FCNN.
Suppose A(0)

i , B
(0)
ij = 0 for all i ∈ [k], j ∈ [d], then A(t)

i = 0, B
(t)
ij = 0 for all timesteps t.

Proof. From the gradient descent update rule, we have that:

A
(1)
i = A

(0)
i + η

n∑
p=1

(
y(p) − fw(0)(x(p))

)
φ(B

(0)
i,: x) = 0 ;

B
(1)
ij = B

(0)
ij + η

n∑
p=1

(
y(p) − fw(0)(x(p))

)
A

(0)
i φ′(B

(0)
i,: x

(p))x
(p)
j = 0 .

We leave it to the reader to verify that the result then follows by induction on the time step t.

The exercises will allow you to verify that for the ReLU activation, B(0) cannot be initialized at 0, but A(0)

can be initialized at 0. The default initialization scheme in several deep learning libraries closely follows the
so-called “standard initialization” scheme defined below.

Standard Initialization. Given a depth L FCNN with activation φ : R → R and weight matrices
{W (i)}Li=1 where W (i) ∈ Rki×ki−1 , we initialize according to:

W
(i)
j`

i.i.d∼ N
(
0,
c

ki

)
,

where c satisfies cEz[φ(z)
2] = 1 with z ∼ N (0, 1) = 1 (for ReLU activation, c = 2).

In the following lectures, we will explain why this is a sensible initialization scheme that is stable upon
increasing network width. In addition, we will derive another initialization scheme known as the Neural
Tangent Kernel (NTK) initialization, which will allow us to train infinitely wide neural networks.

Complexity in training neural networks. Unlike the case for linear and kernel regression, training
neural networks now involves solving a non-convex optimization problem in the weights w. The difficulty
with such problems is that we no longer have simple, closed form solutions nor do we have theoretical
guarantees that we will converge to a solution that minimizes the training loss. Moreover, architecture
choice, initialization scheme, and training procedure all effect the solution learned through training, and we
want to ensure that we choose these aspects to get the best solution possible. Thus, while neural networks
offer a lot of flexibility, such flexibility comes at a cost of increased complexity in modeling choice.

Tips for training FCNNs. Given the several steps involved in training neural networks, it can be difficult
to identify any problems that may arise during implementation. To mitigate such difficulties, we provide
some tips below for successfully training fully connected neural networks.

4



Training tips for fully connected neural networks.
1. Start with a 2 layer (1-hidden layer) ReLU network of width 128. Make sure that the bias terms

are not being used (in PyTorch, set bias=False).
2. Train on 1 training example using mean squared error for 1000 epochs using either: (1) the

Adam optimizer with learning rate 10−4 or (2) gradient descent with learning rate of 0.01.
3. If the loss does reach values of lower than 10−4, then there is likely a bug in the code and one

should verify the following:
(a) Check that the gradients are zeroed out during every step of training before the loss is

computed.
(b) Check the data point and the output of the network at each step of gradient descent. Some

networks, such as those without bias terms, will always map 0 inputs to 0.
(c) Try shrinking the learning rate further to see if the loss decreases.
(d) Try increasing the number of epochs to see if the loss continues to decrease.

4. If the loss converges to near zero (i.e. 10−4 or less), then try training on the entire dataset.
5. Try introducing bias terms (bias=True) and re-training.
6. Increase the width from 128 to higher values and track how training and test loss change.
7. Increase the depth from 1 to higher values and track how training and test loss change.

Important: Please do not start with a model that uses more complex layers such as BatchNorm or
Dropout until you have verified that the above works.
Essential: Ensure that your network is placed in inference mode for test samples and training
mode for training samples. In PyTorch, this is done using the model.eval and model.train flags
respectively. This is necessary when using BatchNorm or Dropout layers as the behavior of these
layers changes during inference time.

4 Autoencoders: Neural Networks for Unsupervised Learning
We now provide a concrete example to illustrate how varying architecture and initialization scheme can dras-
tically impact the solution learned through training. Namely, we will turn to fully connected autoencoders,
which are neural networks commonly used for unsupervised learning problems such as clustering and anomaly
detection. Autoencoders form the backbone of several popular deep learning applications today including
state-of-the-art models for image generation. We begin with the formulation of autoencoders below.

Definition 3 (Fully Connected Autoencoder). Given a dataset X ∈ Rd×n of samples {x(p)}np=1, a fully
connected autoencoder is a fully connected network fw : Rd → Rd that is trained to minimize the loss

L(w) =
1

2

n∑
p=1

‖x(p) − fw(x(p))‖22 .

For simplicity, in the remainder of the section, let us assume that fw is given by a 2 layer, width k network,
i.e.,

f(x) = Aφ(Bx);

where A ∈ Rd×k, B ∈ Rk×d and φ is an elementwise nonlinearity.

Classical intuition behind autoencoding. At first, it would appear that autoencoding simply involves
learning a map from each data point to itself. In particular, the identity function (fw = Id×d) is a simple
map that maps each sample to itself and would yield L(w) = 0. What is thus the advantage of training a
model to learn such a map?

The original idea behind autoencoders was to enforce that the width k is less than the dimension so that the
model cannot learn the identity map. Instead, the model would be forced to learn a low dimensional hidden
representation of the data that can be used to accurately reconstruct the data. To see this mathematically,
let us consider the case of a linear autoencoder, i.e., φ(z) = z.

5



Example 3 (Linear Autoencoder). A linear autoencoder is a network of the form:

f(x) = ABx . (2)

If k < d, then the operator AB has rank at most d while the identity map has rank equal to d. Hence, such
a model cannot learn the identity map. Training a linear autoencoder thus learns an embedding, z = Bx, for
each point x such that Az ≈ x.

On the other hand, if k = d, we can easily set A = B = I, and so such an autoencoder can learn the identity
map. An analogous statement holds for k > d.

Thus, since their inception around 40 years ago in 1986, autoencoders have been introduced with the widely
believed claim that layer width should be less than data dimension so that these models can learn low
dimensional representations of data.

Note that in Example 3 above, when k ≥ d, we showed that it was possible to initialize A,B to be the
identity. Yet, we never actually demonstrated that if we initialize A,B differently, then training will recover
the identity function for both A,B. For example, we can initialize A = (XXT )† and B = (XXT ). We leave
it to the reader to check that ABX = X, and so we minimize the squared loss on the training data. On the
other hand, Bx for any test sample x is now a projection onto the span of the training data. If the data X
is not full rank, then this is quite a useful representation of data, in particular, for applications like anomaly
detection. For example, if a test sample does not lie in the span of the training data (i.e., it is an anomaly),
then its reconstruction under this autoencoder would simply be 0. On the other hand, any sample lying in
the span of the training data would be reconstructed perfectly.

Moreover, as is discussed in [5], remarkably more is true for nonlinear over-parameterized autoencoders, i.e.
those that have width larger than the input. Namely, while such models again can learn the identity map,
training finds a solution that is contractive around training examples.

5 Discussion
In this lecture, we provided a brief introduction to neural networks. We defined the fully connected archi-
tecture, depth, width, and activation function. We then demonstrated how to use gradient descent (and
mini-batch gradient descent) to train neural networks. We provided some commonly used initialization
schemes for network weights for running gradient descent. We then provided some tips for effectively train-
ing fully connected networks. Lastly, we used the example of autoencoders to demonstrate how different
choices in neural network modeling (in particular, initialization scheme) can drastically effect the solution
learned through training.

Overall, we demonstrated that neural networks provide significant modeling flexibility and indeed, such flexi-
bility has been leveraged to successfully empower various applications. Yet, such flexibility unfortunately also
leads to increased complexity, and it remains difficult to provide a set of guiding principles for understanding
which network and hyper-parameters will work best for a given application.

On the other hand, by connecting neural networks with the kernel regression framework, we can combine
the flexibility of neural networks with the simplicity of kernel machines in order to build simple and effective
models. In the next lecture, we will provide our first connection between neural networks and kernel machines
by considering the infinite width limit of neural networks where only the last layer is trained.

References
[1] R. Bassily, M. Belkin, and S. Ma. On exponential convergence of sgd in non-convex over-parametrized

learning. arXiv:1811.02564, 2018.

[2] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning, volume 1. MIT Press, 2016.

[3] A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of
Toronto, 2009.

6



[4] S. Ma and M. Belkin. Diving into the shallows: a computational perspective on large-scale shallow
learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems. Curran Associates, Inc., 2017.

[5] A. Radhakrishnan, M. Belkin, and C. Uhler. Overparameterized neural networks implement associative
memory. Proceedings of the National Academy of Sciences, 44(117):27162–27170, 2020.

[6] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for activation functions. In International Conference
on Learning Representations, 2017.

7


	Introduction
	Fully Connected Neural Networks (FCNNs)
	Training Neural Networks with Gradient Descent
	Autoencoders: Neural Networks for Unsupervised Learning
	Discussion

